
NAVAL POSTGRADUATE SCHOOL
Monterey, California

19980417 152

THESIS

REAL-TIME EVENT EXECUTION MONITORING

by

John J. Drummond

September, 1997

Thesis Advisors: Man-Tak Shing
Valdis Berzins

DTIC QTJALITZ Ii:SP3CT2D 4

Approved for public release; distribution is unlimited.

:'■* #::•:>.

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferscjji
Davis Highway, Suite 1204. Arlington. VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188') Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE
 September 1997.

3. REPORT TYPE AND DATES COVERED
Master's Thesis

4. TITLE AND SUBTTTLETITLE OF THESIS. Real-time Event Execution
Monitoring

6. AUTHOR(S) John J. Drummond

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey CA 93943-5000

PERFORMING
ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the officia]
policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION/AVAILABILrrY STATEMENT
Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
Currently the Computer Aided Prototyping System software development environment provides monitoring

techniques for real-time tasking execution times. However, these techniques are constrained in that there is only a
provision for simple error messages to be presented upon execution failure such as that caused by a missed deadline. This
approach necessitates that the software system designer haphazardly guess a task set execution time.

This thesis performed an examination of fine grain execution timing. This work was accomplished through the
development of a program to perform true dynamic run time data collection of the typical task set execution exhibited
within a real-time environment.

The results of this work is an accurate and efficient real-time task set execution monitoring software program
which assists in overcoming the problem of task set execution run time prediction. The program itself has been embedded
within the Computer Aided Prototyping System environment and is an enhancement over the previous monitoring
technique by providing the system designer with true and accurate run time execution times. The validation of the thesis
work has been performed by successful design and development of time critical real-time prototype software within the
Computer Aided Prototyping System using the execution monitoring program.

14. SUBJECT TERMS Real-Time, Execution Run Time, Prototyping, Event Monitoring 15. NUMBER OF
PAGES 149

16. PRICE CODE

17. SECURITY CLASSIFCA-
TION OF REPORT
Unclassified

18. SECURITY CLASSIFI
CATION OF THIS PAGE
Unclassified

19. SECURITY CLASSIFEA-
TION OF ABSTRACT
Unclassified

20. IIMITATION OF
ABSTRACT
UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18 298-102

11

Approved for public release; distribution is unlimited.

REAL-TIME EVENT EXECUTION MONITORING

John J. Drummond
B.S.C.S., San Diego State University, 1992

Submitted in partial fulfillment
of the requirements for the degree of

MASTER OF SCIENCE IN SOFTWARE ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
September 1997

Author:

Approved by:
Man-Tak Shing, Thesis Advisor

/I(ML ß "
Valdis Berzins, Thesis Advisor

Ted Lewis, Chairman
Department of Computer Science

111

IV

ABSTRACT

Currently the Computer Aided Prototyping System software development

environment provides monitoring techniques for real-time tasking execution times.

However, these techniques are constrained in that there is only a provision for simple error

messages to be presented upon execution failure such as that caused by a missed deadline.

This approach necessitates that the software system designer haphazardly guess a task set

execution time.

This thesis performed an examination of fine grain execution timing. This work

was accomplished through the development of a program to perform true dynamic run

time data collection of the typical task set execution exhibited within a real-time

environment.

The results of this work is an accurate and efficient real-time task set execution

monitoring software program which assists in overcoming the problem of task set

execution run time prediction. The program itself has been embedded within the Computer

Aided Prototyping System environment and is an enhancement over the previous

monitoring technique by providing the system designer with true and accurate run time

execution times. The validation of the thesis work has been performed by successful

design and development of time critical real-time prototype software within the Computer

Aided Prototyping System using the execution monitoring program.

VI

TABLE OF CONTENTS

I. INTRODUCTION 1

A. OBJECTIVE 1
B. METHODOLOGY 2
C. BENEFITS OF STUDY 3
D. SCOPE 3
E. THESIS ORGANIZATION

II. BACKGROUND

 4

 5

A. RELATED WORK 5
B. THE COMPUTER AIDED PROTOTYPING SYSTEM
C. REAL-TIME ISSUES

9
 11

HI. REAL-TIME EVENT EXECUTION MONITORING SYSTEM REQUIREMENTS

A. SYSTEM GOALS

 15

 15
B. FUNCTIONAL REQUIREMENTS
C. SYSTEM CONSTRAINTS
D. RESPONSES TO UNDESIRED EVENTS

IV. DESIGN OF THE REAL-TIME EVENT EXECUTION MONITORING SYSTEM

A. SYSTEM ARCHITECTURE
B. SUBSYSTEM ANALYSIS

1. Object Model

17
18
19

 21

24
28

 29
2. Functional Model 32
3. Dynamic Model 33

C. OBJECT INTERACTION
D. INTERACTION GRAPH
E. EVENT THREADS

38
40

 44
F. OBJECT GROUPING 46
G. OBJECT SHARING 48
H. CODE MAPPING 50
I. CLASS SPECIFICATION

V. IMPLEMENTATION CONSEDERATIONS

A. DESIGN DECISIONS

52

 57

 57

VI. CONCLUSION & FUTURE RESEARCH

APPENDDL

 61

 67

A. USE CASE SHEETS 67
B. OPERATION SHEETS 70
C. EVENT SHEETS 72
D.CODE MAPPING .. .74
E. CLASS SPECIFICATION
F. SOURCE CODE

79
 83

G. PROTOTYPE CODE 109
H. ANALYSIS LOGFILE .114

GLOSSARY 120

vii

REFERENCES 131

INITIAL DISTRIBUTION LIST 133

viu

LIST OF FIGURES AND TABLES

Figure 1. Run Time Monitoring Intrusion.[5] 8
Figure 2. Three phases in gathering and using run time informatnions.[6] 9
Figure 3. Example of Prototyping Process 10
Figure 4 Operator Taxonomy 13
Figure 5. Real-Time Event Execution Monitoring System (Simplified) 21
Figure 6 Real-Time Event Execution Monitoring System Use Case Diagram 22
Figure 7. Real-Time Event Execution Monitoring System Context Diagram 23
Figure 8. Real-Time Event Execution Monitoring System Architecture Layers 25
Figure 9. Run Time Monitoring Subsystems Diagram 26
Figure 10. Run Time Monitoring Subsystem Interfaces 29
Figure 11. Class Diagram for the Real-Time Event Execution Monitoring System 31
Figure 12. Timer State Chart 35
Figure 13. Run Time Measure State Chart 35
Figure 14. Run Time Analysis State Chart 36
Figure 15. Run Time Results State Chart 36
Figure 16. Run Time Measure Scenario 37
Figure 17. Run Time Analysis Scenario 37
Figure 18. Run Time Results Scenario 38
Figure 19. Object Interaction Graph El 41
Figure 20. Object Interaction Graph E2 41
Figure 21. Object Interact Graph E3 42
Figure 22. Object Interaction Graph E4 42
Figure 23. Object Interaction Graph E5 43
Figure 24. Object Interaction Graph E6 43
Figure 25 Object Interaction Graph E7 44
Figure 26. Real-Time Event Execution Monitoring System Event Threads 45
Figure 27. Object Groups for the Real-Time Event Execution Monitoring System 47
Figure 28. Run-Time Execution Data Isolation 61
Figure 29 Prototype Program Experiment 63

Table 1. Use Case Sheet Example 24
Table 2. Real-Time Event Execution Monitoring System Command Table 27
Table 3. Class Description Table for Real-Time Event Execution Monitoring System 30
Table 4. Example Operations Sheet 33
Table 5. Example Event Sheet 34
Table 6. Event List for Real-Time Event Execution Monitoring System 39
Table 7. Building Event Threads for Real-Time Event Execution Monitoring System 40
Table 8. Real-Time Event Execution Monitoring System Shared Object Table 49

IX

LIST OF SYMBOLS, ACRONYMS AND/OR ABBREVIATIONS

CAPS Computer Aided Prototyping System

PSDL Prototyping System Description Language

RM Rate Monotonie

RTOS Real-Time Operating System

COTS Commercial Off The Shelf

MET Maximum Execution Time

MRT Maximum Response Time

FW Finish Within

MCP Minimum Calling Period

EDF Earliest Deadline First

ESF Earliest Start time First

XI

XU

DEDICATION AND ACKNOWLEDGMENT

I would like to dedicate this work to Miss Anh Le, and Edward & Loretta

Drummond who provided abundant moral support during the rough times. I would also

like to acknowledge the support of my advisors, Dr. Valdis Berzins who generated the

initial idea behind this work, and Dr. Man-Tak Shing who provided excellent guidance and

direction throughout this endeavor.

Xlll

XIV

I. INTRODUCTION

A. OBJECTIVE

When designing and developing embedded real-time systems, timing issues are of

paramount importance. As such the problem of achieving strict real-time deadlines must

be overcome to enable proper performance given a set of critically timed real-time tasks.

By utilizing a rapid prototyping approach the designer of these systems is capable of

performing an in depth examination of these timing issues and in turn can attempt to

achieve accurate task set deadlines.

The run-time system monitor research discussed within this thesis is aimed at the

development of feedback mechanisms for a typical system designer based upon the typical

utilization of the Computer Aided Prototyping System environment for construction of

real-time system prototypes.

The use of the Computer Aided Prototyping System in the area of real-time

software design does allow for this in depth examination of timing issues. However, in the

CAPS environment there exists a problem with the monitoring of real-time task sets

during execution time. While there is an acute requirement to collect run-time statistics

during the actual execution of real-time prototype software, at the same time effort must

be focused on minimizing any excessive computational overhead which may result.

The previous method for observing the real-time task execution times within the

Computer Aided Prototype System is that of presenting error messages upon the event of

scheduling in accuracy. Utilization of this method is severely restricted by only having the

capability of error message passing and not a more sophisticated run time data analysis

approach. This current method forces the real-time system designer to rely solely on the

haphazard guessing of the execution times and time budgets. This early monitoring work

produces error messages only when previously declared deadlines are missed. These

messages are also limited in that they do not report how much time passed beyond the

deadline, additionally they do not provide any information if the computation finishes

consistently ahead of schedule.

The Real-Time Event Execution Monitoring System Project will focus upon

equipping the software designer with an improved and more logical analysis approach for

constructing real-time task sets. This will be accomplished by performing accurate and

timely measurement of real-time operator run time execution. This information will then

be provided to the designer for the purpose of developing increasingly accurate and

correct real-time software.

B. METHODOLOGY

The methodology which this thesis effort follows is outlined in three stages. First

stage is the focus upon the development of a system which will generate a report

containing the real-time measured execution time for each specific operator within the

CAPS timing scope. This initial phase includes the software design, development,

implementation, and testing of the Real-Time Event Execution Monitoring System

program.

Once this has been accomplished the second stage is to the restructure the existing

CAPS scheduler. This work will enable a running tabulation of task set execution times to

be compiled. This phase will entail the integration of the Real-Time Event Execution

Monitoring System into the CAPS scheduler module while keeping minimal impact on

environmental overhead. This phase may also include the performance testing on this

integration work.

Lastly the final stage of this thesis work will continue with the construction of a

method to transmit this previously tabulated timing information to the application designer

for utilization in the CAPS tool users prototype design effort. This final phase entails

utilization of the file input/output Ada modules as well as leveraging off the existing CAPS

I/O routines and procedures.

C. BENEFITS OF STUDY

The resulting work within the CAPS program will enable the assignment of

execution time requirements to be handled more efficiently and with increased accuracy

during the prototyping process. Additionally this research work will provide real-time

measurements to ensure that critical tasking will be analyzed correctly and allow increased

accuracy for real-time prototyping designs.

The previous method of utilizing CAPS for real-time prototype system

development in which the determination of a given task set execution time relies upon the

best estimate of the system designer will no longer be needed during the scheduling phase.

Instead the design effort will utilize an accurate record of actual task set run time

execution data for timing requirements of the prototype system.

This feedback to the system designer follows the rapid prototype paradigm by

providing critical program support information back to the user in a timely manner. This

timelines is a strategic factor in development of a prototype as noted by [1] "The goal of a

prototype is different than that of a production software system. Efficient use of designer

time and rapid feedback are more important than robust operation, efficient use of

machine resources, and completeness."

D. SCOPE

The scope of the thesis is the design, development, and evaluation of an accurate

execution time measurement facility for the CAPS system. In the performance of this

mission and within this scope this thesis the attempt to answer three primary questions are

explored.

1. Can run-time statistics be collected during the execution of a real-time

prototype without imposing an excessive computational overhead?

2. Is the monotonic clock of Ada 95 sufficiently accurate to assess timing

properties in adequate detail to support real-time systems design?

3. Is the variance in running times significant?

E. THESIS ORGANIZATION

The first chapter of this thesis serves as the project introduction. Chapter II

provides the background in the areas of similar research work, the Computer Aided

Prototyping System, and Real-Time issues. Chapter III talks about the requirements for

building the Real-Time Execution Monitoring System, including the system goals and

constraints. Chapter IV explores the design of the Real-Time Execution Monitoring

System including system architecture, subsystem analysis, object interaction and grouping.

Chapter V presents the implementation considerations including design decisions. Chapter

VI includes the thesis conclusion and discussion about ongoing future research work. The

Appendices contain the project software design documentation and source code, use case

sheets, operation sheets, event listings, and code mapping outline.

H. BACKGROUND

A. RELATED WORK

This section examines research work related to run time monitoring. A large

quantity of the research work noted here is indirectly (Vs directly) related to the Real-

Time Event Execution Monitoring System project. The main focus of these research

endeavors are not necessarily the measurement and analysis of real-time task set

execution. Rather, their run time monitoring efforts are, in some cases, the byproduct of

other research area focus, such as program monitoring Vs task level monitoring, parallel

Vs non-parallel systems.

Early research work in the area of execution measurement can be found in [2].

Although not performed within a real-time environment, this work examines specific

language based software at the program unit leveL This Ada based work produced a set of

tools for analysis called the Ada Test and Evaluation Tools (ATEST). The tool set

includes packages for: Source Instrumenter; Path Analyzer; Automatic Path Analyzer;

Performance Analyzer; Self-Metric Instrumentation and Analysis; and a Symbolic

Debugger. The limitation of this program run time analysis work is defined by the Ada

environment as noted in [2] "The purpose of these tools is to test and evaluate programs

written in the Ada language." Specific details of an Ada program run time execution can

be acquired using the ATEST as follows. Initially the Source Instrumenter performs a

parsing of the Ada program to be analyzed and breakpoints are inserted within the

program units to allow a Run Time Monitor access. Next, the Run Time Monitor records

the execution data of the program. Lastly, the Report Generator produces a file

containing the execution data. The Performance Analyzer produces a report for user

evaluation which contains program execution timing information in net time and

cumulative time listings.

The work of [3] focuses upon real-time embedded systems with the development

of a timing analysis tool. The Assist in File-Tuning of Embedded Real-time systems

(AFTER) tool provides an interactive analysis and scheduling prediction tooL This tool

elaborates upon task set scheduling theory and monitoring research as well as design work

in real-time operating systems. This instrument allows the designer to perform real-time

scheduling analysis after the implementation phase of the software design effort.

The AFTER approach initially collects raw timing data from the targeted real-time

embedded system. The data is then analyzed to provide a temporal implementation image

which pinpoints existent and/or likely timing difficulties. Scheduling predictions can then

be obtained which are based upon fine adjustments to the software timing properties.

The AFTER system is comprised of four principal modules: the Data Collection &

Storage Unit; the Filter Unit; the Analysis Unit; and the Parameter Modification Unit. The

first module, Data Collection & Storage interfaces directly with the targeted system. Its

main task is to acquire data from system parameters. The method of data collection is not

specific although the preferred technique is the utilization of a profiling mechanism

embedded within the operating system, source code instrumentation is also acceptable.

This data is then forwarded to AFTER through a predefined filter module. The Filter

module extracts raw data from the Data Collection & Storage Unit. The raw data may

consists of task execution times, task period, interrupts times, and operating system

overhead. This filtered information is analysis dependent and user selectable. This filtered

output is then forwarded on to the Analysis Unit which is the essence of the AFTER

system. The Analysis Unit operates in two modes: the predictor mode; and the analysis

mode. When operating in the analysis mode, a temporal image is developed which is based

upon the real data collected from the targeted system. Mathematically modeled

schedulability analysis is then performed on the temporal image based upon the scheduling

algorithms found within the targeted system. It is this phase that difficulties within the

targeted systems real-time software are accentuated. Missed deadlines, critical task set

overutilization, CPU locking are some of the areas which can be highlighted and presented

to the user. The predictor mode utilizes read data and estimated data as the basis for

predicting system timing characteristic changes attributed to fine tuning the targeted

system. The changes in question can be implemented within the targeted system and

perform a follow-up analysis to examine possible system improvements. The Parameter

Modification Unit allows for the user to perform modifications upon the targeted system.

These parameters include: the exchange of aperiodic server interrupt handlers; the

alteration of task frequency; task execution time changes; functionality changes; and

switching task scheduling from dynamic to static.

Two algorithms for insertion of profile monitoring source code into programs were

presented by [4]. This research effort utilizes the approach of measuring a program at the

basic block level for instruction set utilization of the computer system programs. A

profiling algorithm is used to optimize the placement of counters within the program to be

profiled. A tracing algorithm is used to trace a sub sequence of the basic block which is

optimized for the program's execution length. The results of utilizing the profiling and

tracing algorithms is that of reducing the number of counters by a factor of two and

reducing the file size and overhead by 20-40% respectively. Since this thesis deals with the

execution instead of the block level instruction set these algorithms cannot be applied

directly to this thesis.

To provide real-time program development assistance [5] describes an approach

for monitoring execution timing information within the application. The behavioral effect _

of the run time monitoring intrusion into the targeted system on the program performance

is examined by defining time as an element which is composed of two entities. The first

entity is called "clock time" which represents actual time, the second entity represents the

run time execution monitoring execution time called "intrusion time." This work defines

the local time during the execution of task (instrumented) at a given site S as the value

pair (CT, A). Here CTis the clock time of S, while A is the current intrusion time of S. The

estimation of clock time at S during execution of the targeted program (uninstrumented)

then is CT - A. As shown with an illustration from this work in Figure 1 an example task

Ti starts execution at, time = 0, finishes execution at time = 11, with 3 units of

monitoring intrusion. Here local time at the start Ti is (0,0) and at the conclusion of 7/ is

(11,3) which translates to execution time of 8.

0 1 234567 89 10 11 12

(0,0) (2,2) (7,2) (8,3) (11,3)

 >

IZZI Task T i execution

Run time monitor execution

Figure 1. Run Time Monitoring Intrusion. [5]

This approach goes beyond measurement of tasks which finish within deadlines by

allowing for measurement of real-time tasks which exceed deadlines.

In the domain of run time monitoring research there are specific differences

between non-parallel and parallel computer systems. Within the parallel computer system

inherent non-determinism and multiple threads of control are the most prominent.

However, despite these differences insight from this parallel computer system run time

research can increase understanding of overall run time monitoring techniques. The work

of [6] in the area of run time monitoring research of parallel computer systems discusses

the phases of system observation which can also be applied to non-parallel work. The

investigation of system performance is segmented into three phases. The first phase

includes the generation of run time data from system observation. Phase two consists of

transmission and storage of the previously generated run time data. The final phase is that

of interpretation and user utilization of the run time data as shown in their illustration

Figure 2.

Application Storage Usage

Monitoring System Component

Information Flow of run time

Figure 2. Three phases in gathering and using run time informatnions. [6]

B. THE COMPUTER AIDED PROTOTYPING SYSTEM

The Real-Time Event Execution Monitoring System program will reside in the

execution support subsystem of the Computer Aided Prototyping System(CAPS). The

main motivation being the previous release of CAPS of an adequate existing technique for

run time execution monitoring within the CAPS environment. Another factor was the

modular design of the CAPS real-time environment, which allowed for a less constrained

interface design for the Real-Time Event Execution Monitoring System. The eventual

targeting of the CAPS environment provided an ideal locale for the Real-Time Event

Execution Monitoring System software.

The Computer Aided Prototyping System is an environment which provides

system designers with real-time software development tools for constructing large scale

systems with hard real-time constraint requirements. "The Computer Aided Prototyping

System is an integrated software development environment aimed at rapidly prototyping

hard real-time embedded software systems, such as missile guidance systems, space shuttle

avionics systems, and military Command, Control, Communications and Intelligence (C3I)

systems." [7] As its name implies, the CAPS environment follows a prototype

methodology for software development process.

Within this automated environment, the system designer has the capability to

traverse the software development process beginning with requirements analysis then

proceeding to code generation, advancing to subsystem integration, and after

testing/debugging concluding with prototype demonstration and deployment for further

analysis and implementation. As illustrated in [8] the CAPS environment allows a system

designer to develop real-time systems through an iterative rapid prototyping process as

shown in simplified form inFigure 3.

INITIAL GOALS REQUIREMENTS

REQUIREMENTS

ADJUSTMENT

MODULARIZATION r
SiiS^ääsaäSlj&RSS^SsiS^t _

sSä^i^aifeiss&äjäe^asy^

Figure 3. Example of Prototyping Process

The CAPS environment utilizes numerous editors including the Prototyping

System Description Language (PSDL) editor, as well as an Ada editor with which the

system designer can specify the prototype design and Ada source code.

10

Real-time scheduling of the prototype software is provided by the CAPS task

scheduler, and provides for hard real-time as well as non-time-critical task sets. The

CAPS real-time scheduling facility allows for both static and dynamic task scheduling. The

static scheduling of hard real-time tasks is performed a priori based upon the system

designer choice of Earliest Deadline First, Earliest Start time First, Bounded Backtrack,

and Simulated Annealing scheduling algorithms. The dynamic scheduling of non-time-

critical tasks takes place during run time.

An integral component of the CAPS environment is the high-level language PSDL.

This language provides a mechanism for real-time specification within the CAPS

environment through the use of real-time constructs. The CAPS PSDL component allows

for proper modeling of timing issues as well as control constraints developed within the

prototype system by the system designer. As illustrated in "A Prototyping Language for

Real-Time Software" [9] the formal PSDL computational model is an augmented graph:

G = (V, E, T(v), C(v))
where

V = set of vertices

E = set of edges

T(v) = maximum execution time for vertex v

C(v) = set of control constraints for vertex v

C. REAL-TIME ISSUES

The source code implementation of the Real-Time Event Execution Monitoring

System project is based upon the Ada programming language. At the outset of this project

11

the original source code implementation was accomplished using the real-time Ada83

constraints. The project source code was later revised using the Ada95 libraries with real-

time annex constructs.

One of the major differences between these two Ada versions (from within the

focus of this thesis) is that of the real-time extensions found within the Ada95 language

system. The extensions of concern here can be found in section D.8, Monotonie Time of

the Real-Time Systems Annex. The improved granularity afforded by the new Real-Time

System includes constructs for Nanoseconds, Microseconds, and Milliseconds. This type

of fine measurement capabilities were not provided outright in the Ada83 system and this

change assisted greatly in the task of performing accurate run time execution

measurements within the millisecond range.

The CAPS environment model does not call for granularity levels greater than 1

millisecond. The Translator program within the CAPS environment performs a calculation

round-up to 1 millisecond of all significant digits found within the prototype timing

specification. With this circumstance in mind the Real-Time Event Execution Monitoring

System will operate at the minimum of millisecond granularity level The timing

granularity of a given environment is also based upon other factors as noted by [10]. "A

language implementation is limited by the actual time-keeping resources provided by the

hardware, which are possibly filtered through an operating system interface."

To determine clock granularity the target platform operating system in conjunction

with the Ada 95 monotonic time construct accuracy's were examined. The Ada 95 Clock

exhibited granularity within the 500 microseconds to 600 microseconds range.

To provide improved system for the rapid prototyping of embedded real-time

software development the CAPS environment was also rebuilt using the Ada95 real-time

library constructs. The CAPS environment had been previously built from the Ada83

language system. This improvement will allow the user of the CAPS environment to

develop real-time applications containing stringent timing critical constraints within a more

appropriate setting. The focus of the execution monitoring will be upon the CAPS

operator objects. As illustrated by [11] the operator can be described as a taxonomy of

time critical and non critical classes shown below in Figure 4.

12

Figure 4 Operator Taxonomy

The Real-Time Event Execution Monitoring System will focus upon the actual

execution times of the time-critical, statically scheduled operators. For the execution of a

real-time task set to be accurately scheduled by the static scheduler within the CAPS

environment the execution time must be assigned a priori. This constraint results in timing

errors to occur as a result of a faulty choice of task set execution time assignments. The

Real-Time Event Monitor System will provide information on real-time tasks which

exceed their previously scheduled execution time, as well as those which underutilized

their scheduled execution time. This tool provides the system designer with the data

necessary to quickly isolate real-time execution requirements of a given task set. The Real-

Time Event Execution Monitoring System will focus upon the analysis of these statically

scheduled task sets within the CAPS environment, and no attempt will be made at this

time to perform this analysis upon dynamically scheduled task sets.

13

14

HI. REAL-TIME EVENT EXECUTION MONITORING SYSTEM
REQUIREMENTS

This chapter provides an in-depth examination of the basic requirements specific to

the Real-Time Event Execution Monitoring System endeavor. Within chapter HI the

system goals are summarized, functional requirements established, system constraints

enumerated and responses to undesired events investigated and specified. The approach

utilized in the Real-Time Event Execution Monitoring System development effort follows

an Object Oriented methodology for real-time systems design. This approach is based

upon the OCTOPUS methodology. OCTOPUS is a blending of both the Fusion and

Object Modeling Technique methods. The requirements phase is the initial step towards

the Real-Time Event Execution Monitoring System development.

A. SYSTEM GOALS

An initial Real-Time Event Execution Monitoring System project goal is to

measure the real-time operators actual execution time. Additionally this project's other

goals are to enable both hard and soft real-time deadlines within a given software design

to be based on these measurements. Accomplishment of these elements will achieve the

end goal of more efficient and effective use of the available computational resources in

addition to providing for the meeting of strict real-time requirements of the operators.

Towards the achievement of the systems goals this project work will consist of the

development of a system which will generate a report containing the measured execution

time for each statically scheduled real-time operator within the CAPS timing scope.

Additionally another Real-Time Event Execution Monitoring System goal will be to

incorporate the restructuring of the existing CAPS environment to keep a running

tabulation of maximum execution times.

These project goals will also include the transmission of this timing information to

the system designer for utilization in the CAPS users prototype design effort. All of these

objectives will be achieved through the analysis, design, and implementation of an accurate

15

execution time measurement facility for the CAPS system through utilization of the

OCTOPUS design methodology.

The Real-Time Event Execution Monitoring System project has developed the

following main goals for this work effort:

Gl. The Real-Time Event Execution Monitoring System will measure real-time

execution data for each CAPS real-time operator.

Gl.l The Real-Time Event Execution Monitoring System will keep a running

tabulation of the operators actual execution times.

G1.2 The Real-Time Event Execution Monitoring System will provide for a

restructuring of the existing CAPS environment to allow for pending tabulation of

execution time data.

G2. The Real-Time Event Execution Monitoring System will analyze the CAPS

operator run time data for correctness.

G2.1 The Real-Time Event Execution Monitoring System will compare the results

of actual operator run time measured with planned run time.

G3. The Real-Time Event Execution Monitoring System will forward the CAPS

operator run time data to the system designer.

G3.1 The Real-Time Event Execution Monitoring System will allow for utilization

of CAPS real-time operator data in the CAPS tool users prototype design effort.

16

B. FUNCTIONAL REQUIREMENTS

The functional requirements for the Real-Time Event Execution Monitoring

System have been based upon the examination of the initial problem statement* and the

subsequently developed system goals. Additional information used in the functional

requirements were assembled from the Real-Time Event Execution Monitoring System

Use Cases found in Use case sheets Appendix A.

Fl. The Real-Time Event Execution Monitoring System real-time timer shall be

synchronized with the CAPS task schedule timer.

F2. The Real-Time Event Execution Monitoring System shall utilize the computer

system clock as its main time source.

F3. The system clock used by the Real-Time Event Execution Monitoring System

shall have timing with granularity fine enough to allow accurate run time measurement to

be performed.

F4. The Real-Time Event Execution Monitoring System shall functionally operate

timers based upon data from the system clock.

F5. The Real-Time Event Execution Monitoring System shall issue "start timer"

prior to the CAPS real-time operator startup.

F6. The Real-Time Event Execution Monitoring System shall issue "stop timer"

commands after the CAPS real-time operator stop times.

* Real-time event execution monitoring system Thesis Proposal 8/23/96

17

C. SYSTEM CONSTRAINTS

The system constraints for the Real-Time Event Execution Monitoring System

have been compiled form information described within the initial problem statement*, the

system goals, and functional requirements. Also, as was true in the development of the

Functional Requirements, a significant information was assembled from the Real-Time

Event Execution Monitoring System Use Cases located within Appendix A of this

document.

Cl. The Real-Time Event Execution Monitoring System must only be activated

when a valid real-time operator has been created and is designated for monitoring.

C2. The Real-Time Event Execution Monitoring System must only initiate timer

after the successful completion of Operator Run Time Measurement task.

C3. The Run Time Analysis task must only activate upon successful startup and

completion of Run Time Measurement task.

C4. The transmission of operator run time data task must only be initiated upon

successful startup, collection, and analysis of operator run time execution.

C5. The elapsed time between start timer request and timer start must be within 1

milliseconds.

C6. The Max time allowed from ReadOperatorStart and StartTimerExecute must

be within 1 milliseconds.

C7. The Max time allowed from StartTimerExecute and GetClockReadout must

be within 1 milliseconds.

* Real-time event execution monitoring system Thesis Proposal 8/23/96

18

C8. The Max time allowed from ReadOperatorStop and ReadTimer must be within

1 millisecond.

C9. The Max time allowed from ReadTimer and SendTimerData must be within 1

milliseconds.

D. RESPONSES TO UNDESIRED EVENTS

The Real-Time Event Execution Monitoring System design exposes the possibility

of undesired events. This section examines potential undesired events and appropriate

responses to their occurrence. The events have been identified based upon information

within the preceding sections as well as the Real-Time Event Execution Monitoring

System Use Cases which can be found within Appendix A at the end of this document.

Ul. When the Real-Time Event Execution Monitoring System start timer

command is not in concurrency with the CAPS real-time Operator startup the time delay

must be counted and utilized in run time execution calculations.

U2. When the Real-Time Event Execution Monitoring System stop timer

command is not in concurrency with the CAPS real-time Operator execution completion

the time delay must be counted and utilized in run time execution calculations.

U3. When failure to read planned run time characteristics from a valid real-time

operator occurs, an error message code must be transmitted to the run time analysis task.

U4. When timer read clock task fails to provide correct time measure, an error

message code must be transmitted to the run time measure task.

19

20

IV. DESIGN OF THE REAL-TIME EVENT EXECUTION MONITORING
SYSTEM

This chapter will serve as the formulation point of the design phase of the Real-

Time Event Execution Monitoring System project. As mentioned in chapter HI the

OCTOPUS methodology will be followed for the Real-Time Event Execution Monitoring

System development effort. Utilization of this OCTOPUS methodology within the design

phase allows for better management of the heightened complexity present in the

development of real-time systems while employing an Object Oriented approach which

permits modular encapsulation. The components which comprise the Real-Time Event

Execution Monitoring System design include and examination of system architecture,

subsystem analysis and modeling, object interaction, event thread analysis, code mapping,

and class specification.

System
User

Run Time
Monitoring

Reai-Time
Operators

Figure 5. Real-Time Event Execution Monitoring System (Simplified).

The results from the system execution of real-time operators will be viewed and

monitored through the system designer user interface. The user interface is found in the

CAPS environment. Shown in Figure 5 above is a collapsed diagram of this activity

interaction.

21

Run Time Monitor

(UI)Activate Operator
Run Time Program (U2)Start Measurement

Timer

(U6)Analyze Operator
Run Time

(U3)Stop Measurement
Timer

(U7)Transmit Operator
Run Time data to User

(U4)Reset Measurement
Timer

(U5)Get Operator
Planned Run Time

Statistics

Figure 6 Real-Time Event Execution Monitoring System Use Case Diagram.

The Use Case Diagram as shown above in Figure 6 Real-Time Event Execution

Monitoring System Use Case Diagram, describes a substantial portion of the design work

in the development of Run Time Measurement System. This system is initially focused

upon the Use Case Sheets, Use Case Diagram, and System Context Diagram. The

individual Use Case Sheets can be found in Appendix A at the end of this document.

The system context diagram is shown below in Figure 7.

22

System Clock
User/Designer Editor

Run Time Monitoi p

Real-Time
Operators

Real-Time
Scheduler

Renort
Generator

Figure 7. Real-Time Event Execution Monitoring System Context Diagram.

The context diagram for the Real-Time Event Execution Monitoring System was

constructed from the Use Cases and based upon the Actors which will interact with the

system. The system context diagram allows for a structural overview of the system

environment

The basis for this work was drawn from Table 1 example of the Use Case Sheet

found in Object-Oriented Technology for Real-Time Systems. [12] Initially the actors for

the Real-Time Event Execution Monitoring System Use Cases were determined by finding

all external agents which would be interacting with the system. The Real-Time Event

Execution Monitoring System external actors were then classified as Active/Passive,

Client/Nonclient, Primary/Secondary, and roles were determined for each along with

usage information based upon Table 1 below.

23

Use Case Name of case

Actors External requesters of system services or
autonomous activity

Preconditions Conditions need to be satisfied to do the Use
Case

Description Short statement describing the Use Case (time
req, exceptions, etc).

Subuse cases

Exceptions How the system responds to Exceptions listed
above

Activities Line test sequence

Postcondition Conditions after the use case is successfully or
unsuccessfully completed

Table 1. Use Case Sheet Example.

A. SYSTEM ARCHITECTURE

To separate the task of analyzing the Real-Time Event Execution Monitoring

System into reasonably modular components the system architecture has been partitioned.

To accomplish this the Real-Time Event Execution Monitoring System has been

24

decomposed into various independent system domains. The resulting independent system

domains include: User Interface Domain, Device Domain, Measurement Domain, and the

Analysis Domain.

These domains will be representative of Real-Time Event Execution Monitoring

subsystems and merged together later as part of the system integration task work. The

activities being performed within these system domains represent different aspects of the

entire system for example: the User Interface Domain will include System Designer,

CAPS; the Device Domain will include System Clock functions; the Measurement Domain

will be responsible for actual run time calculation; and the Analysis Domain will perfocm

the function of comparative evaluation of the planned and actual operator run times which

will be collected.

User Interface
Run Time Analysis

Run Time
Measurement

System Device

Figure 8. Real-Time Event Execution Monitoring System Architecture Layers.

As shown above Figure 8 illustrates the layered architecture resulting from the

decomposition of the Real-Time Event Execution Monitoring System into specific

independent domains. Communication between domains will be handled via formal

parameter passing. This design will allow for loose module coupling.

The Real-Time Event Execution Monitoring System applications subsystems as

well as hardware interface has been illustrated in the Subsystems Diagram shown below in

25

Figure 9. The Real-Time Event Execution Monitoring System application subsystems

include: Run Time Analysis; System Device; Run Time Measurement; and User Interface,

Run Time Monitor
System

r I
Application
Subsystems

_r I
HardwareWrapper

Subsystem

User
Interface

T
Run Time

Measurement

X
System
Device

Run Time
Analysis

Figure 9. Run Time Monitoring Subsystems Diagram.

The interaction of these subsystems within the Real-Time Event Execution

Monitoring System is shown by a command table found below in Table 2. A Shared

Memory Access Table for the system has not been developed, as there will be no shared

memory access across the Run Time Monitoring subsystems. Communication across

subsystems will take place via formal parameter passing technique. Command

intercommunication between these subsystems is represented by the command table

below.

26

From To Command

User Interface R/T Measurement Start measurement

R/T Analysis User Interface Get Planned Data

R/T Analysis R/T Measurement Get Performance Data

User Interface R/T Analysis Analyze Data

R/T Measurement System Device Start Timer

R/T Measurement System Device Stop Timer

R/T Measurement System Device Reset Timer
J

System Device R/T Measurement Get Time

R/T Analysis User Interface Transmit Data

Table 2. Real-Time Event Execution Monitoring System Command Table.

The four main subsystems will rely upon communication shown in Table 2 above

to transmit commands among subsystems. These commands for the Real-Time Event

Execution Monitoring System will be passed between the respective subsystems via formal

procedure calls and parameter passing as mentioned above.

27

B. SUBSYSTEM ANALYSIS

This section focuses upon detailed inspection of the requirements specification and

application domain of the Real-Time Event Execution Monitoring System. Three Models

are constructed during the Subsystem Analysis phase of software development: the Object

Model, the Functional Model, and the Dynamic Model.

The Object Model includes the Real-Time Event Execution Monitoring System

Class Description Table, and a Class Diagram which describes objects domain and

relationships. The Functional Model is made up of Operations Sheets. These Operation

Sheets provide a focus upon functional interface and services among Run Time

Monitoring subsystems.

The Dynamic Model is comprised of Event Lists, Event Sheets, State Charts,

Scenarios. The Event Lists, and Event Sheets focus upon the Real-Time Event Execution

Monitoring System input occurrences such as real-time operator start. The State Charts

allow for detailed analysis of the Real-Time Event Execution Monitoring System states

within manageable complexity limits. The state charts for Run Time Measure, Run Time

Analysis, Timer, and Run Time Results are included within this analysis. The Scenarios for

the Real-Time Event Execution Monitoring System sequence of events include Run Time

Measure, Run Time Analysis, and Run Time Results. These scenarios are included at the

end of this document in Figure 16, Figure 17, and Figure 18.

The Real-Time Event Execution Monitoring System has been decomposed into

four main subsystems as mentioned in Chapter IV including: User Interface; Run Time

Analysis; Run Time Measurement; and System Device as shown in Figure 8. The major

intercommunication between these subsystems is represented by the command table found

in Table 2.

28

User
Interface

Run Time
Measurement

Run Time
Analysis

Figure 10 Run Time Monitoring Subsystem Interfaces.

The four main subsystems will rely upon the communication shown in Figure 10

above to transmit commands among subsystems. Formal parameters passed between these

subsystems will allow for control and data information to be exchanged.

1. Object Model

The Real-Time Event Execution Monitoring System objects and relationships are

described in this section. The development of the Object Model was derived through an

iterative process. Initially the System Use Cases were examined, and scanned for all nouns

which could represent objects within the system. A list of potential objects was then

formulated from this first pass. Next the potential object list was compared with Use Case

29

objectives to determine object relevancy. The finalized object list for the Real-Time Event

Execution Monitoring System was then Completed.

The objects that are within the Application Subsystem Boundary include: Run

Time Analysis, Timer, Run Time Measure, and Run Time Results. The objects which are

outside the boundary include: Operator, CAPS, Clock, and System Designer.

From this Real-Time Event Execution Monitoring System Object list a Class

Description Table was conceived. The Class Description Table can be seen below.

Class Description

R/T Analysis Compare planned/actual run times

Timer Count execution run time

R/T Measure Sync timer with actual operator
execution start/stop

R/T Results Transmit run time analysis results to
System Designer

Operator Execution entity

CAPS Prototyping execution environment

Clock Real-time system measure device

User Real-time development environment

Table 3. Class Description Table for Real-Time Event Execution Monitoring System,

Using this information a Class Diagram for the Real-Time Event Execution

Monitoring System was developed. This diagram shows the interaction between objects,

30

both within the subsystem boundary and outside the boundary. The Class Diagram shown

below in Figure 11 indicates the segmentation between the application subsystem

boundary.

Operator
timing data

CAPS
execute operator ClQCK

time
date

reads!

±5
sends | sends ^

R/T Analysis
calculate times

S3
R/T Results

run time

ransr

reads 1

Timer
execution time

R/T Measure
execute timing

—TT execute f

transmits I

JJSfiL
r/t statistics

Figure 11. Class Diagram for the Real-Time Event Execution Monitoring System.

The correctness of the Object Model was checked by examining the previously

developed Real-Time Event Execution Monitoring System Use Cases and verifying the

interaction of the objects within the model in completing specific tasks.

31

2. Functional Model

The Real-Time Event Execution Monitoring System functional model is used to

illustrate the functional interface of the subsystems. The Real-Time Event Execution

Monitoring System has been decomposed into four main subsystems including: User

Interface; Run Time Analysis; Run Time Measurement; and System Device.

The services provided by a given subsystem of the Real-Time Event Execution

Monitoring System is depicted within the interface. The interfaces will be across the

subsystem application boundary, between other subsystems and external agents of the

Real-Time Event Execution Monitoring System. The functional model is described by

Operation Sheets which represent the Real-Time Event Execution Monitoring System

operations, associations, and other details. The Operations Sheets can be found in

Appendix B.

The services provided by the subsystem as shown within the functional interface

have been derived from examination of the Use Cases for the Real-Time Event Execution

Monitoring System found in Appendix A. The Operation Sheets describing the functional

model have been developed by following the example provided by [12] is shown below in

Table 4.

32

Operation Name of operation

Description Short statement describing the operation

Associations Associations to the classes and objects and
possibly also to the events and states to which
it is related

Precondition Conditions that need to be satisfied to start the
operation; these do not guarantee that the
operation will be successfully completed

Inputs Arguments that an operation needs to perform
its desired function

Modifies What modifications the operation causes on its
arguments or on common data in the subsystem

Outputs What information the operation needs to supply
its client

Postcondition Conditions after the operation is successf ull y
completed and the conditions that apply if the
operation is terminated due to an error

Table 4. Example Operations Sheet.

3. Dynamic Model

The dynamic model for the Real-Time Event Execution Monitoring System

represents an order of interaction between the system and the users of the system.

Illustrating the possible operations within a specific state, the dynamic model outlines the

resulting effect of the Real-Time Event Execution Monitoring System operations. The

dynamic model also outlines the timelines of these specific operations and conditional

33

performance information the Real-Time Event Execution Monitoring System operations

themselves.

The Dynamic model for the Real-Time Event Execution Monitoring System

consists of initial analysis of events by creation of event lists and event sheets. The event

sheet is a major component of the Real-Time Event Execution Monitoring System's

dynamic model. The development of the Event Sheet is based upon the event sheet

template proposed by [12] shown below in Table 5. Actual event sheets for the Real-

Time Event Execution Monitoring System are listed in Appendix C beginning on page 72.

Event

Response

Associations

Source

Contents

Response Time

Rate

(E1) Name of the event

The desired end-to-end response from the system

Associations to the classes and objects and
possibly also to the related operations

The originators of the event, for example, other
subsystems or the hardware wrapper

Data attributes that an event may hold

The maximum and minimum time limitations
concerning the giving of the response

The rate of occurrence that can be, for example,
at startup, periodic every 10 minutes, timed at
8:00 AM and 2:00 PM, occasional, exceptional,
and so forth

Table 5. Example Event Sheet.

34

Following the event analysis stage is the state analysis which is comprised of Real-

Time Event Execution Monitoring System state charts found in the Figure 12. Timer State

Chart, Figure 13. Run Time Measure State Chart, Figure 14. Run Time Analysis State

Chart and, Figure 15. Run Time Results State Chart as shown below.

Timer
S1

I
Reset
S1.4

inactive
ST.1

< L

i'

Stopped
S1.3

Started
S1.1

Figure 12. Timer State Chart

Run Time Measure
S2

I
Send data
S2.4

Read CAPS
S2.1

, k

> '

Read timer
S2.3

Execute timer
S2.2

Figure 13. Run Time Measure State Chart

35

Run Time Analysis
S3

I
Transmit data
S3.4

Read Exe data
S3.1

i i

' t

Calculate
S3.3

Read Operator
S3.2

Figure 14. Run Time Analysis State Chart

Run Time Results
S4

I
Read data
S4.1

' '

Send report
S4.3

Format report
S4.2

Figure 15. Run Time Results State Chart

The last stage of dynamic modeling for the Real-Time Event Execution Monitoring

System is the actual validation of the model itself, by utilization of scenarios illustrated

below in Figure 16, Figure 17, and Figure 18.

36

CAPS R/T Measure

r
1 ms r
1 ms

r
1 ms

r
1 ms

r
1 ms

ReadOperatorStart

ReadOperatorStop

Timer

StartTimerExecute

ReadTimer

SendTimerData

Clock

GetCIockReadout

SendClockReadout

Figure 16. Run Time Measure Scenario.

Operator R/T Measure

ReadPlannedRunTime

R/T Analysis

ReadActualRunTime

R/T Results

SendCalculation

Figure 17. Run Time Analysis Scenario.

37

FVT Analysis R/T Results

ReadCalculations

PSDL Editor

SendExecutionTimes

Figure 18. Run Time Results Scenario.

C. OBJECT INTERACTION

The Real-Time Event Execution Monitoring System project interaction between

previously developed objects is outlined in this section. This object interaction is based

upon the Event List, found in Table 4 below, encountered within the systems requirements

section. The Event List was produced within the Dynamic Model of the Subsystem

Analysis component which is comprised of Event Lists, Event Sheets, State Charts,

Scenarios.

The Event Lists, in this case, will focus upon the Real-Time Event Execution

Monitoring System input occurrences such as real-time operator start event. The object

interaction from these input occurrences is detailed within Event Threads and Object

Interaction Graphs of the Real-Time Event Execution Monitoring System. The Event List

Table is shown below to provide coherence to this object interaction.

38

Event Description

(El) ReadOperatorStart Get actual CAPS operator start time

(E2) ReadOperatorStop Get actual CAPS operator stop time

(E3) ReadOperatorData Get Planned operator execution times

(E4) GetClockTime Get clock current readout

(E5) ReadTimerStart Get timer start readout

(E6) ReadTimerStop Get timer stop readout

Table 6. Event List for Real-Time Event Execution Monitoring System.

The initial task for describing object interaction was the construction of Event

Threads. The Event Threads for the Real-Time Event Execution Monitoring System were

developed by following the recommended [12] step-by-step approach for building event

threads using the OCTOPUS method. This process is summarized in Table 7 below. The

«vent threads created include: read operator start; read operator stop; get clock time; read

operator data; read timer start; and read timer stop. The Event Threads are located in

section E of this chapter.

39

1. Select an event not yet considered.

2. Identify an object involved in the processing of the selected event.

3. Design and record subsequent interactions.

4. Merge the new object interaction thread with existing ones.

5. Repeat from step 3 as long as other involved objects can still be found

6. Repeat from step 1 unless done for all events.

7. Iterate and balance the use of objects and Statecharts.

Table 7. Building Event Threads for Real-Time Event Execution Monitoring System.

Next the development of Object Interaction Graphs were produced to provide a

detailed representation of the Real-Time Event Execution Monitoring System object

interaction. The development of these object interaction graphs is again based upon each

of the previously created event threads within the Real-Time Event Execution Monitoring

System. The object interaction graphs are also central to the lists of events derived from

the system requirements development in Chapter III. The object interaction graphs are

located in the next section.

D. INTERACTION GRAPH

The object interaction graphs created for the Real-Time Event Execution

Monitoring System are based upon four major events. These events include:

ReadOperatorStart; ReadOperatorStop; ReadOperatorData; GetClockTime;

ReadTimerStart; and ReadTimerStop. The objects associated with these specific event

40

include objects outside as well as inside the Real-Time Event Execution Monitoring

System application subsystem boundary.

The CAPS object and Run Time Measure object are both involved in the

processing of the ReadOperatorStart and the ReadOperatorStop events and form the basis

of the object interaction graph El and E2 respectively. Additionally statechart run time

measure and statechart run time analysis are also involved in event processing included in

the object interaction graph for the events. This can be seen in Figure 19 and Figure 20

below.

statechart
run time
measure

1.2. R/W

CAPS

1. read operator start

R/T Measure

Figure 19. Object Interaction Graph El

statechart
run time
measure

2.2. R/W

CAPS

2. read operator stop

R/T Measure

statechart
run time
analysis

2.3. R/W

Figure 20. Object Interaction Graph E2.

41

The ReadOperatorData event is reliant upon the Operator object and the Run Time

Analysis objects for processing as depicted in the object interaction graph E3. Also

included within the object interaction graph E3 are the statechart run time results and

statechart run time analysis.

Operator

statechart 3. read operator timing data
run time
analysis statechart

run time
results

i

1 -% D/YX7
' r

J.4. IV V»
RAT Analysis

3.3. R/W

Figure 21. Object Interact Graph E3.

The object Clock and object Timer are directly involved in the processing of the

GetClockTime event and are included within the object interaction. graph E4. The

statechart timer is also included in the E4 object interaction graph as it has some

involvement in the processing of the GetClockTime event as shown below in Figure 22.

Clock

statechart
timer

4. read

i

A *> xtnx r
* '

Timer

Figure 22. Object Interaction Graph E4.

42

The Timer object and Run Time Measure object are specifically involved in the

processing of the ReadTimerStart and ReadTimerStop events as shown in object

interaction graph E5 and E6. Observing Figure 23 and Figure 24 one can see that the

Statechart run time measure and Statechart timer also take part in this event processing.

Timer

statechart
run time
measure

5. read timer counter

statechart
timer C "> -DIXKI

* '

R/T Measure A E

«i t>

Figure 23. Object Interaction Graph E5.

Timer

statechart
run time
measure

'

6. read

i

6.1. RAV
'

R/T Me asure

Figure 24. Object Interaction Graph E6.

The Run Time Analysis object and Run Time Results object together provide for

the presentation of run time execution data to the user as shown in object interaction

43

graph E7. As illustrated in Figure 25 the Statechart run time results is also included in this

delivery of data to the user.

R/T Analysis

7. read analysis results

''

statechart
run time
results

rVT Results
t i.

7.1. R/W

Figure 25 Object Interaction Graph E7.

E. EVENT THREADS

The event thread diagram for the Real-Time Event Execution Monitoring System

includes the interaction of seven objects including: CAPS; Operator; Clock; Timer; Run

Time Analysis; Run Time Analysis; Run Time Measure; Run Time Results; and four state

charts which include: statechart run time analysis; statechart run time measure; statechart

run time results; and statechart timer. This diagram illustrates all object interaction and can

be found in Figure 26 below.

44

CAPS

Operator

3. read
operator
timing

- R/T Analysis |~

3.3. R/W

statechart
run time
results

7.1 R/W r

7. read
analysis
results

3.2. R/W

statechart
run time
analysis

2.3 R/W

| R/T Results |

1,2. read
operator
start/stop

Clock |

4.2. R/W

4. read
clock

counter

statechart r
timer

Timer

5.3 R/W

5,6 read
timer

counter

R/T Measure

1.2,2.2
5.2,6.1 R/W

statechart
run time
measure

Figure 26. Real-Time Event Execution Monitoring System Event Threads.

The event thread sequence begins with Sequences one and two which represent

read operator start and operator stop. This read takes place from the CAPS object to the

Run Time Measure object. This exchange allows the Run Time Measure object to obtain

precise operator execution times. State changes during these interactions are recorded and

read from the statechart run time analysis and the statechart run time measure.

Sequence three represents a read of the Operator object by the Run Time Analysis

object. The Operator object contains planned run time data which must be utilized in the

calculation of planned Vs actual run time of a specific operator. State changes resulting

from these interactions are written to, and read from two state charts. The statechart run

time analysis and the statechart run time results are used for sequence three event thread

activities.

45

The Clock object is read by the Timer object in Sequence four. The values of the

counter data found in Clock object are utilized by the Timer object to establish start and

stop times for the execution of the Operator object. The state chart utilized for state

changes resulting from the interaction of these objects is the statechart timer. This state

chart is written to by the Timer object and read by the Timer object.

Interaction between the Timer object and the Run Time Measure object is noted as

Sequences five and sequence six. The Run Time Measure object reads the Timer object

counter value at specific times to mark the start and stop of the Operator object execution.

The changes to states are noted in two state charts. The timer activity changes in state are

written to statechart timer, which the Timer object also reads from. The state changes in

the measurement object called Run Timer Measure are written to and read from the

statechart run time measure. The statechart timer is also read by the Run Time Measure

object.

F. OBJECT GROUPING

The object grouping for the Äeal-Time Event Execution Monitoring System is

based upon the rules for determining a fair set of object groups found in the Object

Oriented Technology for Real-Time Systems [12]. The developed object group diagram is

described in Figure 27 Object Groups for the Real-Time Event Execution Monitoring

System shown below.

46

Figure 27. Object Groups for the Real-Time Event Execution Monitoring System.

The group Gl is composed of one object and one state chart. The Run Time

Measure object is one of the main objects within the Real-Time Event Execution

Monitoring System program. This object is responsible for interacting with the main Timer

object, the CAPS object and the Run Time Analysis object. The statechart run time

measure serves to hold state changes.

The object grouping listed as the group G2 also contains one object and one state

chart. This group G2 is responsible for direct interaction with the system Clock object as

well as the Run Time Measure object from the group Gl. The statechart timer will hold all

state changes for the Timer object. This state chart is a shared object. The statechart timer

47

is accessed by both the Run Time Measure object from the group Gl and the Timer object

from the group G2. This access consists of both read and write on the part of both Gl and

G2 group objects.

Group G3 consists of two objects and two state charts. The Run Time Analysis

object is also a critical part of the Real-Time Event Execution Monitoring System

program. The object directly interacts with the Operator object as well as the Run Time

Measure object from Gl and the Run Time Results object within G3. The state charts

within this group G3 are the Statechart run time analysis and the statechart run time

results. The statechart run time analysis is a shared object with group G3 and group Gl.

This state chart is accessed by both the Run Time Analysis object from the group G3 as

well as the Run Time Measure object from the group Gl. This access consists of read and

write on the part of the Run Time Analysis object in G3 and write only on the part of the

Run Time Measure object in Gl.

G. OBJECT SHARING

The sharing of objects within the Real-Time Event Execution Monitoring System

software is intentionally kept to a minimum. Furthermore the only entities to be shared

between object groups are not, in the most strict interpretation,, exactly objects

themselves. These entities, which are shared among the object groups, are certain State

Charts. The statechart run time analysis as well as the statechart timer are both written to

and read from among the different object groups. The required selected grouping of

objects and resultant independent execution of these objects from differing paths elicits the

sharing of the objects as depicted in the Shared Object Table found inTable 8 below.

48

Object Shared Between Groups Solution

Statechart run
time analysis

G1-G3 Uncritical

statechart timer Gl - G2 Uncritical

Table 8. Real-Time Event Execution Monitoring System Shared Object Table.

The direct interaction between the object group Gl and the object group G3 calls

for the statechart run time analysis to be shared. The Run Time Measure object interacts

with the statechart run time analysis by writing to it and the Run Time" Analysis object

performs both writing and reading operations on the state chart. This sharing interaction

between objects groups of the statechart run time analysis is not considered critical to

synchronization, and no context or interrupt blocking or disabling is recommended for this

design.

The direct interaction among the object group Gl and the object group G2

necessitates that the statechart timer be shared. The Timer object interacts with the

statechart timer by both writing to the state chart and reading from the state chart. The

Run Time Measure object also interacts to the statechart timer by performing both read

and write functions on the state chart. As in the case of the statechart run time analysis,

the sharing interaction between objects groups of the statechart timer is not considered to

be critical to synchronization, and no context or interrupt blocking or disabling is

advocated in this design as is shown inTable 8.

49

H. CODE MAPPING

This section represents the control structure pseudo code for the Real-Time Event

Execution Monitoring System program. This pseudo code exemplifies the Code Mapping

which is based upon the earlier design segmentation representing the Gl, G2, and G3

Object Groupings. The Code Mapping consists of linking each of these groups to an Ada

task, such as the CAPS static scheduler. The Code Mapping which will be concluded in

the implementation phase of the Real-Time Event Execution Monitoring System program

will be based upon Ada objects, functions, and procedures rather than processes as shown

in the pseudo code found in code mapping Appendix E. Communications between object

groups will be implemented as Ada procedure calls and is represented in the pseudo code

as such. The pseudo code found in the Appendix E is used to describe the control

structure of each task within its group.

Beginning this pseudo code narration from the perspective of the group Gl, the

initial sequence of steps is to initialize a real-time timer. This is accomplished via the

CREATE_NEW_RT_TIMER call which returns an initialized real-time timer. The new

real-time timer is then started and placed in the running state using the

START_RT_TIMER call. Prior to getting the execution start time the timer is reset and

the counter is set to zero using RESET_RT_TIMER call. All the above calls are from the

RTMEASURE object to the TIMER object, group Gl to group G2 respectively. Next the

RTMEASURE object sends a get start time command to TIMER object. This is

accomplished, again, via communication between the group Gl and the group G2. After

the read operator execution start the next step is to read the time counter from the TIMER

object to the RTMEASURE object. Checking for invalid operator data is performed and

flagged if present. The value for operator start time in the record type

RUN_TIME_RECORD.

Continuing on, the next step after the operator has finished executing is to send

execution command reading TIMER elapsed time from RTMEASURE object to TIMER

object. The communication is between the group Gl and the group G2 as implemented.

50

The read of the elapsed time counter from the TIMER object to the RTMEASURE object

is performed to get the stop time counter data.

The value for operator execution count is incremented and stored along with

operator finishing time are stored within the record type RUN_TIME_RECORD. Next an

synchronous communication between the group Gl and the group G3 is achieved via the

GET_OPERATOR_EXECUTION_DATA call This enables Gl to send the Operator run

time execution data to G3. This transfer is from the RTMEASURE object to the

RTANALYSIS object.

The perspective of pseudo code from the group G2 begins with the reception of

the call to create a new TIMER from the RTMEASURE object group Gl. Upon receiving

this call the TIMER object establishes a new record type TIMER_RECORD, adds the

timer to the timer list and returns a new timer to the RTMEASURE object. Next the

RTMEASURE object calls the TIMER object to start the newly created timer and reset

the_timer prior to operator execution start. Next the G2 group TTMER object performs a

read counter function from clock object to TIMER object and checks for invalid system

clock data.

The reception of the command to stop timer execution from the group Gl

RTMEASURE object to the group G2 TIMER object is performed. Next the system clock

is read from the clock object to the TIMER object and the elapsed time is recorded.

Group G3 is responsible for performing an analysis on the execution time data and

provide a run time result to the RTRESULT object. This process is initiated by reading the

predefined operator timing data from the operator object and checking for validity. Once

this has been accomplished the planned run time data is stored in the record type

RUN_TIME_RECORD.

The next step in the analysis process is to retrieve the operator run time data from

the RTMEASURE object group Gl. This is achieved by using the

GET_OPERATOR_EXECUTION_DATA procedure, once received the data is checked

for validity and stored in the record type RUN_TIME_RECORD. This record is then

forwarded on to the ANALYZE_RESULTS_DATA procedure within the group G3

module. This procedure performs calculations upon the operator run time data to

51

determine various operator characteristics such as run time averages, maximums, and

execution count. This data is also stored within the RUN_TIME_RECORD structure.

The RTANALYSIS object group G3 then transmits the analysis information to

RTRESULT object also within group G3 with the SEND_OPERATOR_RUN_1TME

CALCULATION_DATA call. The construction of a logfile is undertaken for writing the

tabulated operator run time execution data. The logfile is opened and the data within the

RUN_TIME_RECORD is written to the file. When finished the logfile is then closed.

This analysis information is formulated into run time execution output for

transmission to the user object for run time statistical review for program timing analysis

(i.e. adjust scheduler to better fit actual execution run time.)

I. CLASS SPECIFICATION

Within the Real-Time Event Execution Monitoring System project there are four

object classes. These classes include: RTANALYSIS; RTMEASURE; RTRESULTS; and

TIMER. Ada Language class package specifications have been developed for each of

these object classes. These package specifications include definitions of public and private

attributes, as well as definitions for functions and procedures of the Real-Time Event

Execution Monitoring System object classes. The Ada class package specification for the

objects can be seen in Appendix E Class specification

The object RTANALYSIS includes the

GET_OPERATOR_EXECUTION_DATA procedure, the procedure called

GET_OPERATOR_TIMING_DATA, and the Ada procedure titled

SEND_OPERATOR_RUN_TIME_CALCULATION_DATA. This object is contained

within the Ada RUN_TIME_ANALYSIS package which is also comprised of an

establishment of a record type "RUN_TIME_RECORD", which is defined in the

RUN_TIME_MEASURE package, for synchronous intergroup data communication. The

communication between the group Gl and the group G3 is accomplished within the

52

procedure GET_OPERATOR_EXECUTION_DATA by the record type RUN_TIME

_RECORD. The procedure ANALYZE_RESULTS_DATA performs an analysis upon the

operator run time execution data previously collected. The results of the specific analysis

is stored within the respective record type RUN_TIME_RECORD subtype element.

The RTMEASURE object includes the real time timer related procedures

CREATE_NEW_RT_TIMER; procedure START_RT_TIMER, and

RESET_RT_TIMER which are for the establishment of the real-time timer, the starting of

the real-time timer and the elapsed time counter reset of the real-time timer respectively.

The Ada procedure GET_OPERATOR_EXECUTION_START, and the Ada procedure

GET_OPERATOR_EXECUTION_STOP provide for timing interaction between the

CAPS object, the TIMER object and RTMEASURE object. The procedure

SEND_OPERATOR_EXECUTION_DATA is used to provide the synchronous

communication link between the group Gl and the group G3. Within this procedure the

record type for sending data from Gl to G3 is RUN_TIME_RECORD is composed of the

subtypes: Operator_Name (representing the current operator under run time execution

analysis), Execution_Start/Execution_Stop (representing the operator execution starting

and finish times), Planned_Start/Planned_Stop (representing the operator statically

scheduled start and finish times), Actual_Run_Time/Planned_Run_Time (representing the

operators actual execution time and the operators pre-scheduled execution time),

Overhead (representing the current run time monitoring intrusion time), Total_Run_Time

(representing the cumulative execution run time of the operator), Total_Timing_Error

(representing a running total of operator run time errors including missed deadline),

Average_Timing_Error (a running average of the operator timing errors),

Average_Run_Time (representing average operator execution run times),

MaximumJlunJTime (the largest execution time recorded for the specific operator),

Execution_Count(total number of operator firings), and Run_Time_Difference (planned

Vs actual operator execution run time). This RUN_ITME_RECORD record is public and

is shared by all the Real-Time Event Execution Monitoring System modules. Lastly the

procedure SUBTRACT_TTMER allows for the subtraction of time of type "Duration"

53

from the real-time timer elapsed time element. All of these elements are contained within

the Ada package RUN_TIME_MEASURE.

The TIMER object handles all of the creation and administration of real-time timer

functions. The TIMER object contains procedures, functions and data types patterned

after the CAPS PSDLJTIMERS module*. The major difference between these two

modules is that of the Ada package used by the respective module. The PSDLJTIMERS

module is based upon the ADA.CALENDAR package and the RUN_TIME_TIMER

module is based upon the ADAREALJITME package. The TIMER object utilizes

structure consisting of record type TIMER_RECORD. The subtype are STARTJTME of

type ADA.REAL_TIME.Time, ELAPSED_TIME of type

ADA.REAL_TIME.DURATION) and PRESENT_STATE which is an enumerated type.

For real-time timer handling the TIMER object utilizes the NEWJITMER function to

create and initialize a new real-time timer entity, procedure START to start the timer

counter, procedure RESET to zero the. timer counter, and the function

HOST_DURATION to read the total time accumulated in the real-time timer on the host

machine. The synchronous communication between the group G2. and the group Gl, as

represented by the above objects, is accomplished by record type RUN_TIME_RECORD

and the procedure call HOST_DURATION in combination with the RTMEASURE object

procedures GET_OPERATOR_EXECUTION_START,

GET_OPERATOR_EXECUTION_STOP. The above elements are all contained within

the RUN_TIME_TIMER Ada package.

The simplest of the entire group of Ada language class package specifications for

the Real-Time Event Execution Monitoring System contains six procedures. The object

class called RTRESULTS is specified within the Ada package RUN_TIME_RESULTS.

Within this object are the procedures which manipulate the Real-Time Event Execution

Monitoring System logfile. The procedure Build_Log_File initially creates a logfile for

storage of the Operator execution monitoring and analysis results. The Open_Log_File

procedure performs an open call on the previously created logfile at periodic intervals.

Once open, the logfile is populated with Operator execution run time data via the

* See Chapter V, Section A, Design Decisions

54

procedure Write_Log_File, the file is then closed by utilization of the Close_Log_File

procedure. The procedure GET_OPERATOR_RUN_TIME_CALCULATION_DATA is

utilized for intergroup communication with the RTANALYSIS object, the record type

RUN_TIME_RECORD is used to pass data between the RTANALYSIS object and the

RTRESULTS object. The GET_OPERATOR_RUN_TIME_CALCULATION_DATA

procedure, together with the log file handling procedures formulate the RTRESULTS

object and are contained within the RUN_TIME_RESULTS Ada package. The

RTANALYSIS and RTRESULTS together perform the tasks of receiving and calculating

the operator run time and transmitting the results to the User for analysis.

55

56

V. IMPLEMENTATION CONSEDERATIONS

The implementation of the Real-Time Event Execution Monitoring System source

code utilized the ADA programming language. Initial work for this project source code

software development was undertaken by using the Ada83 libraries. This source code

development effort was later completed by reworking the system based upon the Ada95

libraries with real-time annex constructs.

To monitor the run time execution of real-time task sets the Real-Time Event

Execution Monitoring System program leveraged off previously mentioned related work

by the strategic placement of profiling points within the CAPS static scheduler

"STATIC_SCHEDULE" task. However, this approach raises the question of introducing

an additional set of overhead intrusion into the system. Issues such as the competition for

real-time CPU resources, and additional context switching must be acknowledged. The

monitoring intrusion resulting from implementation of the Real-Time Event Execution

Monitoring System program is discussed further in chapter VI conclusion & future

research.

A. DESIGN DECISIONS

This section includes project design decisions and modifications which are related

to the Real-Time Event Execution Monitoring System project development and design

effort.

The initial project decision was made to utilize the Object Oriented approach called

OCTOPUS for the development of the Real-Time Event Execution Monitoring System

project. The decision was based upon a choice between the CAPS/PSDL approach and the

OCTOPUS approach. The chosen OCTOPUS method is a hybrid of OMT and Fusion

methods, and intended for real-time design.

The requirement analysis of run time execution monitoring work was initiated by

deciding to pursue the approach of isolating and determining the system goals for run time

57

execution monitoring system. Subsequently it was decided to rework the goals to broaden

the systems objectives for the Real-Time Event Execution Monitoring System project to

include more refined descriptions. These revised project goals will allow for the

transmission of additional timing information to the system designer for utilization in the

CAPS users prototype design effort. Also included additional sub-goals into the goals

section.

The approach to the system architecture followed a partition method. The

partitions represented modular components created to separate the tasks of analyzing the

Real-Time Event Execution Monitoring System. The Real-Time Event Execution

Monitoring System was accordingly decomposed into various independent system

domains. This decomposition resulted in the following independent system domains: User

Interface Domain, Device Domain, Measurement Domain, and the Analysis Domain. To

allow for loose module coupling the communication between these previously segmented

domains the utilization of a formal parameter passing method was followed.

For the Object Model construction an iterative process for the development of the

Object Model was utilized. This approach followed a method where the System Use Cases

were first examined, scanning for nouns to represent system objects. These objects were

then formulated from this first pass into a list. The resulting object list was then compared

to the previously developed Use Case objectives to determining the relevancy of each

object. In this way the object list was then prepared to be completed.

The development of the functional model utilized the previously created operation

sheets. This allowed for the Real-Time Event Execution Monitoring System to present a

more accurate description of functional interface of the subsystems. The services provided

by a given subsystem of the Real-Time Event Execution Monitoring System are depicted

within this interface. The interfaces spans across the subsystem application boundary,

between other subsystems and external agents of the Real-Time Event Execution

Monitoring System.

In a similar way the development of the dynamic model for the Real-Time Event

Execution Monitoring System was based upon the initial analysis of events through the

58

creation of event lists and event sheets. This was followed by utilization of state charts to

provide event analysis, and validated the dynamic model by use of scenarios.

The initial task for describing object interaction was accomplished by the

construction of Event Threads. Developed the Event Threads for the Real-Time Event

Execution Monitoring System by following the recommended step-by-step approach for

building event threads when using the OCTOPUS method. The resulting event threads

which were created included: ReadOperatorStart; ReadOperatorStop; ReadOperatorData;

GetClockTime; ReadTimerStart; and ReadTimerStop.

This was followed by the development of object interaction graphs which were

based upon each of the previously created event threads within the Real-Time Event

Execution Monitoring System. The object interaction graphs were also constructed using

the lists of events which were previously developed within the System Requirements

document. The Object Interaction Graphs were produced to illustrate the detailed

representation of the Real-Time Event Execution Monitoring System object interaction.

The development of the object grouping for the Real-Time Event Execution

Monitoring System was based upon the rules for determining a fair set of object groups

found in [12]. The control structure pseudo code for the Code Mapping was based upon

the earlier design segmentation representing the Gl, G2, and G3 Object Groupings. The

Code Mapping consisted of linking each of these groups to an Ada task. The

communications between object groups will be implemented as formal parameter passing

based upon a record type RUN_TIME_RECORD.

For the development of the Real-Time Event Execution Monitoring System

program source code software is was initially decided to utilize the CAPS environment to

develop a prototype version. This was to be accomplished by transposing tasks into

operators and communication threads into streams. Eventually this approach was

considered to be not feasible due to the state of version upgrade which the CAPS

environment was undergoing. Summarily the utilization of the CAPS tool to develop a

prototype was abandoned.

In place of utilizing the CAPS environment for source code development the was

accomplished within a simple UNIX environment with the basic compiler and standard

59

debugging tools. The language of choice for this code development and implementation

work was Ada. The Ada83 libraries were used for the'initial project source code software

development. This development effort was later changed to utilization of the Ada95

libraries with real-time annex constructs. The final implementation was created based upon

these Ada95 libraries to provide a finer granularity in clock ticks.

Additionally it was determined that the most efficient method for implementation

of the REAL_TIME_TIMER package would be to leverage off the existing

PSDL_TTMERS package. The rational for this decision was twofold. Since the

PSDLJTIMERS package was implemented by utilizing the ADA.CALANDER libraries

the future utilization for CAPS environmental development which required using real-time

constructs found in the ADA.REAL_TIME libraries would be less cumbersome as the

REAL_TIME_TTMER package was based upon the latter. Additionally, the

PSDLJTIMERS package was written soundly and would provide a good base for the

.timing measurement effort.

60

VL CONCLUSION & FUTURE RESEARCH

This thesis successfully introduced a ran time execution monitoring program into

the CAPS embedded real-time software development environment component called the

static scheduler tooL This enhancement to the CAPS static scheduler enabled a

significantly improved feedback of real-time event execution data to the system user. The

task run time execution response data included: timing information on task execution start

and finish; underallocation/overallocation of statically scheduled task execution times;

total number of timing errors during execution; run time monitor intrusion overhead

resource utilization; total number of operator firings; and average/slowest/fastest run time

execution data.

The Real-Time Event Monitor program has been successfully applied to a specific

targeted prototype software developed under the CAPS environment. This has been

accomplished by instrumenting the CAPS static scheduler module with profiling points

which transmit all run time execution data to the various modules within the Real-Time

Event Execution Monitoring System program. All resulting run time data has been

obtained from the operation of the targeted prototype software.

The targeted prototype software has been "fine tuned" by transmission and analysis

of the run time execution data provided by the Real-Time Event Execution Monitoring

System. This fine tuning consisted of an iterative process, as shown in Figure 28 . This

process isolated an appropriate time segment for the targeted prototype software Operator

execution. Once the optimal execution time segment has been determined it is then verified

by prototype software operation.

gg_«„____™™_si

PÄiÄifl WfrfeSMÜK^r-w Wf^miWG
^Jgsg|g3g|||p|fHSp^|j|B ^^^S^^I^p^^^f'S^-iB ■s^A^J^^^^Sfc^fe"^ wMßsBämmr l&&wMMsrs!S£vr i£ÄKSifi*Bp n

Figure 28. Run-Time Execution Data Isolation.

61

The successful employment of the Real-Time Event Execution Monitoring System

required that a careful examination be performed upon the resulting intrusion behavior and

overhead resource utilization. The actual collection of task run time execution data

required intrusion of two simple procedure calls. The remaining analysis and tabulation of

the run time execution data required a much more burdensome imposition. Initially the

overhead intrusion was significant enough to introduce timing errors into the static

scheduling module. However, this difficulty was overcome through the implementation of

an intrusion irunimization method. Following this approach required the active

synchronization of the real-time timer and the scheduler timers. The data collection

overhead figures range from 301 microseconds to 347 microseconds. The run time

execution data analysis and tabulation overhead figures range from 2.215 milliseconds to

1.834 milliseconds. At each monitoring intrusion point the scheduler timer was stopped

and summarily restarted once the monitoring activity was completed. Additionally the

majority of the overhead processing costs were greatly minimized by placement of the

analysis and tabulation tasking to occur at the end of the harmonic block segment, just

prior to the scheduling timer reset. Through the implementation of the intrusion

minimization method the computational overhead required for the operation of the Real-

Time Event Execution Monitoring System was determined to be not excessive.

This thesis demonstrates that run-time statistics can successfully be collected

during the execution of a real-time prototype without imposition of an excessive

computational overhead. There were however some initial complications in the actual

extraction of overhead intrusion data figures as is mentioned in later paragraphs within this

section.

This thesis has also determined that real-time event monitoring is an effective tool

for improving the maximum execution time assignment for real-time task sets. To

illustrate this an experiment has been performed upon real-time prototype software. The

software for this study is a real-time temperature controller. The temperature controller is

a simplified program comprised of two real-time operators. The program operation

consists of a sensor operator which continually monitors temperature changes and an

evaluation operator that performs an analysis on the sensor output. The heater or cooler

62

mechanisms are adjusted by signals from the eval operator. Illustrated below in Figure 29

is an elementary dataflow diagram describing the temperature controller prototype

program. The Sensor operator and the Eval operator are time-ctirical, each has a period of

1 millisecond. The three numbers listed beneath the Sensor operator and Eval operator

respectivly represent three seperate sets of maxmium execution times. The operator's

execution was statically scheduled.

Temperature

1.7500e-01 ms

4.5000e-05 ms

1.2600e-04ms

Heat_Signal

2.0000e-01 ms

9.9200e-04 ms

1.6430e-03ms

Cool_Signal

Figure 29 Prototype Program Experiment

A series of three separate test experiments have been performed upon the

temperature controller prototype. The results can be observed in the Operator Run Time

Analysis Logfile listed in Appendix H. This logfile represents the output for the three

separate prototype program execution timing adjustment iterations in which the maximum

execution time constraint has been altered without modification to the period.

63

During the 1ST RUN the operator Sensor planned execution time was set to 175.0

milliseconds. This initial planned time proved to be far in excess of even the 32T).0

microsecond maximum run time recorded. The figures for the minimum execution time of

8.8 microseconds and an average execution time of 120.0 microseconds were also

recorded during this run of the Sensor operator. The 1ST RUN data for the operator Eval

also proved that the planned execution time of 200.0 milliseconds was excessive. A

maximum execution time of 2.078 milliseconds, a minimum execution time of 1.199

milliseconds, and an average execution time of 1.3756 milliseconds were recorded for this

run. Additionally both operators incurred no timing errors while their execution time

included the excessive slack afforded by the initial planned times.

Based upon this feedback provided by the first run, the maximum execution time

of the Sensor operator and the Eval operator were changed to 45.0 microseconds and

90.0 microseconds respectivly. However, the resulting run time included a significant

increase in the number of timing errors incurred. The maximum, minimum and average run

time for the Sensor operator were 260.0 microseconds, 90.0 microseconds, and 121.667

microseconds respectively. The maximum, minimum, and average run time for the Eval

operator were 1.56 milliseconds, 1.137 milliseconds, and 1.22183 milliseconds

respectively.

Again utilizing the Operator Run Time Analysis Logfile as a feedback mechanism,

an observation of the data obtained from the second run clearly shows that the planned

execution times for the sensor and eval operators have been adjusted too low. Timing

errors are occurring at almost every execution period. Accordingly the 3RD RUN of the

Sensor operator with the planned execution time set more closely to the actual observed

run times, has provided a more likely fit. The planned execution time of 126.0

microseconds worked well without a significant increase in the occurrence of timing

errors. The maximum, minimum, and average run times were 131 microseconds, 91

microseconds, and 96.8 microseconds respectively. For the 3RD RUN of the Eval

operator the planned execution time was also changed to 1.643 milliseconds. This change

resulted in no significant increase in the occurrence of timing errors as compared to the

64

first run. The maximum, minimum, and average run times were 1.511 milliseconds, 1.221

milliseconds, and 1.2876 milliseconds respectively:

This thesis has demonstrated the viability of applying the Ada95 libraries and the

Monotonie Time real-time extension annex for critical close tolerance measurement

requiring fine time within microsecond level granularity.

The variation in run time for specifically isolated task set created within the CAPS

environment has also been investigated. This variance within run time execution of the

CAPS operator ranges from 23 to 29 microseconds. This thesis concludes that this real-

time task run time execution variation is due to conditional factors outside of the

environment which the prototype development is being performed. The platform CPU

being a shared resource, hence the CAPS program does not have exclusive utilization

rights. Therefore the CAPS (Real-Time Event Execution Monitoring System, Static

Scheduler, etc) environment is essentially swapped out of the CPU periodically being

replaced by other local processes as local interrupts are periodically generated. Thus, the

variance is not large enough to be significant for purposes of prototype development

within the CAPS environment. If finer grain development work must be accomplished a

dedicated system is recommended.

Many topics still remain and future work in this area should address these areas.

There is a need to upgrade the entire grouping of PSDL timer modules within the CAPS

environment from the ADACALENDAR timing package to the ADAREALJITME

timing package. This task will allow CAPS to become more aligned with the Real-Time

Event Execution Monitoring System program real-time approach. This work will provide

for an improved timing granularity and increase the eventual prototype development

accuracy.

There is also a need for an enhancement of the task run time execution feedback

mechanism. The specific task data information should be presented in a separate

"ANALYSIS" window within the CAPS environment to allow easy user access.

The accurate determination of overhead intrusion into the static scheduler for run

time execution monitoring is currently very cumbersome. The immediate program must be

run from within the static scheduler and separate from the prototyping process to

65

determine the overhead intrusion. The resulting data is not without inaccuracies and

allows some variation.'Future work in this area should address a dynamic collection of

intrusion data figures. The record type RUN_TEME_RECORD which allows for storage

of operator execution data has been altered to include the subtype labeled Overhead. Any

future effort to dynamically collect intrusion should make use of this structure to allow a

more accurate determination of overhead calculation.

The Real-Time Event Execution Monitoring System program should be fully

integrated into the CAPS environment. This work will include establishing a linkage with

the PSDL editor.

66

^

APPENDIX

A. USE CASE SHEETS

Use Case Schedule R/T task
Actors CAPS R/T SCHEDULERS
Precondition Real-Time Operator created
Description Schedule real-time task, check for valid MET, MRT, PERIOD

Exception if invalid schedule. Check for parent task.
Subuse cases
Exceptions Produce error message
Activities
Postcondition Task given a valid real-time schedule, placed in execution queue

if successfully completed.

Use Case (Ul)Activate Operator Run Time Program
Actors System Designer, User/Designer
Precondition Real-Time Operator previously created
Description Start operator run time measurement program. Exception when no

designated Real-Time Operator can be found.
Subuse cases
Exceptions System responds to Exception by producing an error message, do not

proceed with timer activation.
Activities
Postcondition Operator run time measurement program started, prepare to activate

timers upon successful completion. Unsuccessful completion produce
error message

Use Case (U2)Start Measurement Timer
Actors System Clock
Precondition Valid Real-Time Operator previously created, and Operator Run

Time
Program started.

Description Start clock timing when real-time operator starts its execution.
This task includes that of providing accurate real-time timing
information. The timing requirements are to provide granularity
at least fine enough to allow accurate run time measurement to be
performed. Timing requirements also include task to execute at same

67

time as operator starts executing. Exception when task fails to execute
concurrently with operator.

Subuse cases
Exceptions System responds to Exception by producing an error message, do not

proceed with run time measurement
Activities
Postcondition Activated timer to capture operator run time data upon successful

completion. Unsuccessful completion produce error message

Use Case (U3)Stop Measurement Timer
Actors System Clock
Precondition Valid Real-Time Operator previously created, Operator Run Time

Program started, and Start Measurement Timer started and
successful.

Description Stop clock timing when real-time operator completes its execution.
This task includes that of providing accurate real-time timing
information. The timing requirements are to provide granularity at
least fine enough to allow accurate run time measurement to be
performed. Timing requirements also include task to execute at same
time as operator stops executing. Exception when task fails to execute
and stop timer.

Subuse cases
Exceptions System responds to Exception by producing an error message,

proceed with Reset Measurement Timer task activation.
Activities
Postcondition Timer stopped, proceed with capture of run time data for analysis,

and Reset Measurement Timer task upon successful completion.
Unsuccessful completion produce error message

Use Case (U4)Reset Measurement Timer
Actors Autonomous activity of system
Precondition Start Measurement Timer started, and Real-Time measurement

timer task previously stopped successfully
Description Reset timer when run time measurement completes its execution.

The task is part of providing accurate real-time timing information.
Timing requirements include this task to execute before next operator
starts executing. Exception when task fails to reset the timer.

Subuse cases
Exceptions System responds to Exception by producing an error message,

do not proceed with Measurement Timer task activation.
Activities
Postcondition Timer reset, proceed with start of run time measurement upon

successful completion. Unsuccessful completion produce error
message

68

Use Case (U5)Get Operator Planned Run Time Characteristics
Actors System Designer, R/T Scheduler, Operator
Precondition Valid Real-Time Operator created and R/T characteristics

prespecified
Description Retrieve the planned run time characteristics of real-time operator

check for timing constraint properties MET, MRT, PERIOD, FW,
MCP, MOP Exception if invalid characteristics.

Subuse cases
Exceptions System responds to Exception by producing an error message

to user, do not proceed with Operator run time analysis task
activation.

Activities
Postcondition Real-time operator characteristics can now be compared with actual

run time results. Unsuccessful completion produce error message

Use Case (U6)Analyze Operator Run Time
Actors Autonomous activity of system
Precondition Planned Real-Time Operator data previously collected, and Operator

Run Time data compiled.
Description After collecting actual and planned Operator run time data an

analytical comparison will be performed between actual and planned
execution times. Exception will occur when comparison invalid

Subuse cases
Exceptions System responds to Exception by producing an error message,

do not proceed with transmission of data to user task activation.
Activities
Postcondition Comparison data will have been calculated based upon actual

Operator run time Vs planned. Unsuccessful completion produce
error message

Use Case (U7)Transmit Operator Run Time data to User
Actors System Designer, User/Designer
Precondition Real-Time Operator data previously correctly collected and analyzed.
Description At the completion of Operator Run Time data collection, and

the finish of Operator Execution, the actual and planned run time
analysis data for given operator will be presented. Exception will
occur when comparison invalid.

Subuse cases
Exceptions System responds to Exception by producing an error message,

operator run time data transmission to user replaced by error code.
Activities
Postcondition Display run time data analysis for user viewing upon successful

completion. Unsuccessful completion produce error message

69

B. OPERATION SHEETS

Operation
Description

Associations
Preconditions

Inputs

Modifies

Outputs

Postcondition

Operation
Description
Associations
Preconditions
Inputs
Modifies

Outputs
Postcondition

(01) CalculateOperatorRunTime
Using the timer data which measured operator start and stop times
the actual run time of the operator is subsequently calculated.
Object R/T Measure, Operator, R/T Results, R/T Analysis
Accurate measurement of operator start/stop execution times must
have been completed. Operator planned timing data must have been
developed.
Operator execution start and execution completion time, Operator
planned timing start and completion times.
No modification to the operations argument, no modification to
common data within the subsystem.
Operation result -Operator Run Time forwarded to R/T Results
Object
If valid operator run time timer data is obtained and planned run
run time is read then the calculation of the difference (if any) can
proceed. Upon error condition no calculation takes place.

(02) SetStartTime
Start timing clock for operator run time execution measurement
Object Clock, R/T Measure, Timer
Accurate system clock with fine granularity.
Signal from R/T Measure
No modification to the operations argument, modification to
common data within the subsystem includes update time counter
Start time forwarded to R/T Measure Object
If accurate clock resolution is available, start timer is set Upon
error condition no timer start takes place.

Operation (03) SetStopTime
Description Stop the timing clock for operator run time execution measurement
Associations Object Clock, R/T Measure, Timer
Preconditions Accurate system clock with fine granularity.
Inputs Signal from R/T Measure
Modifies No modification to the operations argument, modification to

common data within the subsystem includes update time counter
Outputs Clock Stop time forwarded to R/T Measure Object
Postconditions If accurate clock resolution is available, stop timer is set Upon

error condition no timer stop (or start).

Operation (04) ResetTime

70

Description Reset the timing clock for operator run time execution measurement
Associations Object Clock, R/T Measure, Timer
Preconditions Accurate system clock with fine granularity.
Inputs Signal from R/T Measure
Modifies No modification to the operations argument, modification to

common data within the subsystem includes zeroed time counter
Outputs Successful reset of timer code forwarded to R/T Measure Object
Postconditions Assuming accurate clock resolution, a reset of the timer takes place.

Upon error condition no reset of timer -Real-Time Event Monitoring
System notified with error code.

Operation (05) ReadOperatorData
Description Get the real-time operator planned execution time.
Associations Object Operator, R/T Measure, R/T Results, R/T Analysis
Preconditions Valid Operator real-time characteristics execution times must

have been completed.
Inputs Real-time operator planned execution run time.
Modifies No modification to the operations argument, no modification to

common data within the subsystem.
Outputs Operation result -Operator planned Run Time forwarded to

R/T Analysis Object
Postconditions If valid operator exists, then read of operator execution time data

takes place. Upon error condition no read of data. -Run Time
Monitoring System notified with error code.

Operation (06) SendOperatorExecutionData
Description Transmit the real-time operator execution analysis.
Associations Object, R/T Results, R/T Analysis, System Designer
Preconditions Valid real-time Operator run time execution data must have been

analyzed and sent.
Inputs Real-time operator execution run time data.
Modifies No modification to the operations argument, no modification to

common data within the subsystem.
Outputs Operation result -analyzed Operator Run Time transmitted to

System Designer Object
Postconditions Upon successful completion of run time analysis and valid

calculation of run time, this data is transmitted to System Designer
Upon error condition generated error code message is sent.

71

c. EVENT SHEETS

Event
Response

Associations
Source
Contents
Response Time
Rate

Event
Response

Associations
Source
Contents
Response Time
Rate

Event
Response

Associations
Source
Contents

Response Time
Rate

Event
Response

Associations
Source
Contents

Response Time

(El) ReadOperatorStart
Receive confirming signal that Real-Time operator has
started execution. Synchronize the operator start with the
timer start
CAPS, R/T Measure
R/T Measure
Timing info for timer synch.
Max. 1 ms
Periodic or Sporadic

(E2) ReadOperatorStop
Receive confirming signal that Real-Time operator has
stopped execution. Synchronize the operator start with the
timer stop.
CAPS, R/T Measure
R/T Measure
Timing info for timer synch.
Max. 1 ms
Periodic or Sporadic

(E3) ReadOperatorData
Receive confirming signal that Real-Time operator has
stopped execution. Synchronize the operator start with the
timer stop.
Operator, R/T Analysis
R/T Analysis
Analysis information data on planned operator execution run
time.
Max. 1ms
Periodic or Sporadic

(E4) GetCIockTime
Receive confirming signal that Real-Time operator has
stopped execution. Synchronize the operator start with the

timer stop.
Operator, R/T Analysis
R/T Analysis
Analysis information data on planned operator execution run
time.
Max. 1 ms

72

Rate Periodic or Sporadic

Event
Response

Associations
Source
Contents

Response Time
Rate

(E5) ReadTimerStart
Receive confirming signal that Real-Time operator has
stopped execution. Synchronize the operator start with the
timer stop.
Operator, R/T Analysis
R/T Analysis
Analysis information data on planned operator execution run
time.
Max. 1 ms
Periodic or Sporadic

Event
Response

Associations
Source
Contents

Response Time
Rate

(E6) ReadTimerStop
Receive confirming signal that Real-Time operator has
stopped execution. Synchronize the operator start with the
timer stop.
Operator, R/T Analysis
R/T Analysis
Analysis information data on planned operator execution run
-time.
Max. 1ms
Periodic or Sporadic

73

D. CODE MAPPING

Group Gl:

-Initialization of a new real-time tinier for execution monitoring
CREATE_NEW_RT_TTMER;

--Call the Timer object GROUP-G2
RT_timer := RUN_TIME_TIMER.NEW_TIMER;

-Start the recently created real-time timer
START_RT_TIMER;

-Call the Timer object GROUP-G2 to start
RUN_1TME_TIMER.START(RT_timer);

—Zero the real-time timer counter prior to measure start
RESET_RT_TTMER

- Call Timer object GROUP-G2 for counter reset
RUN_TIME_TIMER.RESET(RT_timer);

-Retrieve the actual execution starting time of the CAPS operator.
GET_OPERATOR_EXECUTION_START

— Initialize start time
Operator_Data.Execution_Start := 0.0;

— Get the real-time timer counter
Operator_Data.Execution_Start :=

float(RUN_TIME_TIMER.HOST_DURATION(RT_timer));

- Update the execution count
Operator_Data.Execution_Count := Operator_Data.Execution_Count + 1.0;

74

—As the CAPS Operator finishes execution retrieve the actual execution
—finish time„of the CAPS operator.
GET_OPERATOR_EXECUTION_STOP

— Initialize stop time
Operator_Data.Execution_Stop := 0.0;

— Get the real-time timer counter
Operator_Data.Execution_Stop :=

float(RUN_HME_TIMER.HOST_DURATION(RT_timer));

— Send execution command start timer execution from RTMEASURE
- object to RTANALYSIS object GROUP-G3
GET_OPERATOR_EXECUTION_DATA(Operator_Data);

Group G2:

- Create and initializes new timer upon call from RTMEASURE object GROUP-G1
NEW_TIMER

—Create new real-time timer record
result := new TTMER_RECORD;

—Include the new timer record in the list of timers
add(result, timers);

-Return the new timer to the RTMEASURE object GROUP-G1
return result;

-Begin running the timer counter upon call from RTMEASURE object GROUP-G1
START

—Set the real-time timer record state and establish start time
NAME.PRESENT_STATE:= RUNNING;
NAME.START_TIME:= CLOCK;

-Reset the clock counter to zero upon call from RTMEASURE object GROUP-G1
RESET

—Set the real-time timer counter to zero and restablish start time
NAME.ELAPSED_TTME:= 0.0;
NAME.STARTTIME := CLOCK;

75

- Receive the command from the RTMEASURE object to get the execution time
start
-return the elapsed time for start time establishment
HOST_DURATION

-Set the return value in type duration for RTMEASURE object storage
NAME.ELAPSED_TIME + CLOCK - NAME.START TIME:

- Receive the command from the RTMEASURE object to get the execution time
start
-return the elapsed time for start time establishment
HOST_DURATION

-Set the return value in type duration for RTMEASURE object storage
NAME.ELAPSED_TIME + CLOCK - NAME.STARTTIME;

Group G3:

- Read predefined operator timing data from operator object
GET_OPERATOR_TIMING_DATA

— Initialize data variable
Operator_Data.PIanned_Riin_.Time := 0.0;

— Check for valid operator data
if (Operator_DataJPIanned_Stop > Operator_Data.Planned_Start) then

— Calculate Planned Run Time
Operator_Data.Planned_Run_Time :=

(Operator_Data.Planned_Stop - Operator_Data.Planned_Start);
else
— Put error message
PUT_LINE("RUN_TIME_ANALYSIS:GET_OPERATOR_TIMING_DATA:

STOP < START");
end if;

- Receive operator execution data from the RTMEASURE object GROUP-G1
GET_OPERATOR_EXECUTION_DATA;

76

- Initialize data variable
Operator_Data.Actual_Run_Time := 0.0;

~ Validity check
if (Operator_Data.Execution_Stop > Operator_Data.Execution_Start) then

- Calculate Actual Run Time
Operator_Data.Actual_Run_Time :=

Operator_Data.Execution_Stop - Operator_Data.Execution_Start;
else
~ Put error message
PUT_LINE("RUN_TTME_ANALYSIS:

GET_OPERATOR_EXECUTION_DATA:
STOP < START");

end if;

— Send results to be analyzed from within the RTANALYSIS object
ANALYZE_RESULTS_DATA(Operator_Data);

- Perform an analysis upon the recently retrived CAPS operator
— run time data.
ANALYZE_RESULTS_DATA;

~ Get total run time
Operator_Data.Total_Run_Time :=
Operator_Data.Actual_Run_Time + Operator_Data.Total_Run_Time;

— Determine average run time
Operator_Data.Average_Run_Time :=

(Operator_Data.Total_Run_Time / Operator_Data.Execution_Count);

— Check for new maximum run time
if (Operator_Data.Actual_Run_Time > Operator_Data.Maximum_Run_Time)

then
Operator_Data.Maximum_Run_Time := Operator_Data.Actual_Run_Time;

end if;

— Find planned/actual run time difference
if (Operator_Data.Actual_Run_Time > Operator_Data.Planned_Run_Time) then

Operator_Data.Run_Time_Difference :=
Operator_DataActual_Run_Time - Operator_Data.Plaimed_Run_.Time;

else
Operator_Data.Run_T4me_Difference :=

Operator_Data.Planned_Run_Time - Operator_Data.Actual_Run_Time;

77

end if;

-- Move execution data from RTANALYSIS object to RTRESULTS object
- within GROUP-G3

SEND_OPERATOR_RUN_TIME_CALCULATION_DATA;

- Receive data from analysis procedure
SEND_OPERATOR_RUN_TIME_CALCULATION_DATA;

- Send the execution data to RTRESULTS object
GET_OPERATOR_RUN_TIME_CALCULATION_DATA;

- The resultant run time statistics are displayed to the users
SEND_EXECUTE_RUN_TEVIE_DATA;

— Open previously created logfile for writing
Open_Log_File;

— Write the operator execution data to open logfile
Write_Log_File;
— Close logfile when finished writing
Close_Log_File;

78

CLASS SPECIFICATION

package RUN_TIME_MEASURE is

— Record of operator data
— AH of the record elements are per instance of each operator,
type RUN_TIME_RECORD is
record
Operator_Name : String(1..6);
Execution_Start : float := 0.0;
Execution_Stop : float := 0.0;
Planned_Start : float := 0.0;
Planned_Stop : float := 0.0;
ActualJRunJTime : float := 0.0;
Planned_Run_Time : float := 0.0;
Overhead : float := 0.0;
TotaI_Run_Time : float := 0.0;
TotaI_Timing_Error : float := 0.0;
Average_Timing_Error : float := 0.0;
Average_Run_Time : float := 0.0;
Maxinium_Run_Time : float := 0.0;
Execution_Count : float := 0.0;
Run_Time_Difference : float := 0.0;

end record;
type RUN_TIME_LIST is access RUN_TIME_RECORD;

procedure CREATE_NEW_RT_TTMER;

procedure START_RT_TIMER;

procedure RESET_RT_TIMER;

procedure GET_OPERATOR_EXECUTION_START(
OperatorJData: in out RUN_TIME_RECORD);

procedure GET_OPERATOR_EXECUTION_STOP(
Operator_Data: in out RUN_TIME_RECORD);

procedure SUBTRACT_TIMER(sub_tinie : in Duration);

procedure SEND_OPERATOR_EXECUTION_DATA(
Operator_Data: in out RUN_TIME_RECORD);

end RUN_TIME_MEASURE;

79

package RUN_TIME_ANALYSIS is

procedure GET_OPERATOR_EXECUTION_DATA(
Operator_Data : in out RUN_TIME_RECORD);

procedure GET_OPERATOR_TIMING_DATA(
Operator_Data : in out RUN_TIME_RECORD);

procedure ANALYZE_RESULTS_DATA(
Operator_Data : in out RUN_TIME_RECORD);

procedure SEND_OPERATOR_RUN_TIME_CALCULATION_DATA(
Operator_Data:in out RUN_TIME_RECORD);

end RUN_TIME_ANALYSIS;

package RUN_TIME_TIMER is

subtype MILLISEC is NATURAL;
type TIMER is private;
type timerjist is private;

empty JimerJist: constant timerjist;
function first(tl: timerjist) return TIMER; - raises no_subcomponents
function rest(tl: timer_list) return timer_Iist; - raises no_subcomponents
procedure add(t: TIMER; tl: in out timerjist);

no_subcomponents: exception;

function READ(NAME: in TIMER) return MILLISEC;
- Timer reading wrt the target machine,

procedure RESET(NAME: TIMER);
procedure START(NAME: TIMER);
procedure STOP(NAME: TIMER);

- operations used by the CAPS tools.
function NEWJTIMER return TIMER; -- creates and initializes a new timer
function HOST_DURATION(NAME: TIMER) return duration;
- total time accumulated in the Timer on the host machine.

function TARGET_TO_HOST(d: DURATION) return DURATION;

80

-- Converts durations on the target machine to the
- corresponding durations on the CAPS host machine,

procedure STOP_ALL_TTMERS;
procedure START_ALL_TIMERS;
procedure SUBTRACT_HOST_TIME(T: duration; NAME: TIMER);
— Subtract T (host machine duration) from the reading on the timer

procedure SUBTRACT_HOST_TIME_FROM_ALL_TIMERS(T: duration);
— Subtract T (host machine duration) from the reading on all timers

pragma INLINE(READ, RESET, START, STOP);
pragma INLINE(HOST_DURATION, STOP_ALL_lTMERS,

START_ALL_TIMERS);

private
type timer_list_record is
record

value: TTMER;
next: timerjist;

end record;
type timerjist is access timer_list_record;

empty_timer_list: constant timerjist := null;
type STATE is (RUNNING, STOPPED);

type TTMER_RECORD is
record
- AH times in a TTMER_RECORD are wrt the caps host machine.
STARTTEVIE: TIME; - Meaningful only if PRESENT_STATE = RUNNING.
ELAPSEDJITME: DURATION := 0.0;
PRESENTJSTATE: STATE := STOPPED;

end record;
type TIMER is access TTMER_RECORD;

end RUN_TTME_TTMER;

package RUN_TTME_RESULTS is

LOGFTLE_IS_OPEN: boolean := FALSE;

procedure
GET_OPERATOR_RUN_TIME_CALCULATION_DATA(Operator_Data:inout
RUN_TTME_RECORD);

procedure SEND_EXECUTE_RUN_TIME_DATA;

81

procedure Open_Log_FiIe(Log_File : in out File_Type; Log_Mode: in File.Mode;
Log_Name: in String; Log_Form: in String);

procedure BuiId_Log_File (Log_FiIe: in out File_Type; Log_Mode: in File_Mode;
Log_Name: in String; Log_Form: in String);

procedure Write_Log_File(Log_File: in File_Type; Log_Item: in String;
Log_Data: float);

procedure CIose_Log_File(Log_FiIe: in out File_Type);

end RUN_TIME_RESULTS;

82

SOURCE CODE

— RUN_TIME_MEASURE.ADS

— This module is called by the main program to monitor the run time of
— the CAPS operators which have been previously scheduler by the static
— scheduler

with TEXT JO; use TEXT JO;
with ADA.REAL_TIME; use ADAREALJTME;

— Run Time Measure procedures declaration

package RUN_TIME_MEASURE is

— Record of operator data
— All of the record elements are per instance of each operator,
type RUN_TIME_RECORD is

record
Operator_Name : String(1..6);
Execution_Start : float := 0.0;
ExecutionJ5 top : float := 0.0;
PlannedjStart : float := 0.0;
Planned_Stop : float := 0.0;
Actual_Run_Time : float := 0.0;
PlannedJR.un_.Time ; float := 0.0;
Overhead : float := 0.0;
Total_Run_Time : float := 0.0;
Total JimingJError : float := 0.0;
Average_Timing_Error: float := 0.0;
AverageJRunJune : float := 0.0;
Minimum_Run_Time ; float ;= 100.0;
Maximum_Run_Time : float := 0.0;
Execution_Count : float := 0.0;
Run JuneJDifference ; float := 0.0;

end record;
type RUNTIME JJST is access RUNJTMEJRECORD;

83

procedure CREATE_NEW_RT_TIMER;

procedure START_RT_TIMER;

procedure RESET_RT_TIMER;

procedure GETJ3PERATORJEXECUTION_START(
Operator_Data: in out RUN_TIME_RECORD);

procedure GET_OPERATOR_EXECUTION_STOP(
Operator_Data: in out RUNJITME_RECORD);

procedure SUBTRACT_TIMER(sub_time : in Duration);

procedure SEND_OPERATOR_EXECUTION_DATA(
OperatorJData: in out RUN_TIME_RECORD);

end RUN_TIME_MEASURE:

- RUN_TIME_MEASURE.ADB

- This module is called by the main program to monitor the run time of
- the CAPS operators which have been previously scheduler by the static
- scheduler

withTEXTJO;
with RUN_TIME_TIMER: use RUN_TIME_TIMER;
with RUN_TIME_ANALYSIS; use RUN_TIME_ANALYSIS:
with ADAREALJITME; use ADA.REAL_TIME;

package body RUN_TIME_MEASURE is

package FLOAT_IO is new TEXT_IO.FLOAT_IO(FLOAT);

-The real-time timer

84

RTjimer: RUN_TIME_TIMER.TDVIER;

 *************** ********************************** ******************

- CREATE NEW TIMER

- This procedure is called by the scheduler program to create a new
- real time timer by calling the RUN_TIME_TIMER package.

procedure CREATE_NEW_RT_TIMER is

begin

- Call RUN_HME_TIMER module to create new timer

RT_timer := RUN_TIME_TIMER.NEW_TIMER;

end CREATE_NEW_RT_TIMER;

~ STARTRT.TIMER

— This procedure is called by the scheduler program to start the real
— time timer operating.

procedure START_RT_TIMER is

begin

- Call RUN_TTME_TIMER module to start the real-time timer

RUN_TME_TIMER.START(RT_timer);

end START_RT_TIMER;

- RESET_RT_TIMER

— This procedure is called by the scheduler program to perform a reset
— of the real time timer.

85

procedure RESET_RT_TIMER is

begin

-- Call RUN_TIME_TIMER module for counter reset

RUN_TIME_TIMER.RESET(RT_timer);

end RESET RT TIMER:

- GET_OPERATOR_EXECUTION_START

- This procedure is called by the scheduler program to retrieve the
- actual execution starting time of the CAPS operator.

procedure GET_OPERATOR_EXECUTION_START(
Operator_Data: in out RUN_TIME_RECORD) is

begin

— Initialize start time
Operator_Data.Execution_Start := 0.0;

— Get the real-time timer counter
Operator_Data.Execution_Start :=

float(RUN_TIME_TIMER.HOST_DURATION(RT_timer));

end GET_OPERATOR_EXECUTION_START;

- GET_OPERATOR_EXECUTION_STOP

- This procedure is called by the scheduler program to retrieve the
- actual execution stopping time of the CAPS operator.

procedure GET_OPERATOR_EXECUTION_STOP(
Operator_Data: in out RUN_TIME_RECORD) is

86

begin

— Initialize stop time
Operator_Data.Execution_Stop := 0.0;

— Get the real-time timer counter
Operator_Data.Execution_Stop :=

float(RUN_TIME_TIMER.HOST_DURA'nON(RT_timer));

— Update the execution count
Operator_Data.Execution_Count := Operator_Data.Execution_Count + 1.0;

end GET_OPERATOR_EXECUTION_STOP;

— SUBTRACTJITMER

— This procedure is called within the scheduler program to subtract
— time from the real-time timer. This allows for alignment to actual
— execution time with the CAPS operator.

procedure SUBTRACT_TIMER(sub_time : in Duration) is

begin

RUN_TIME_TIMER.SUBTRACT_HOST_TIME(
RUN_TIME_TIMER.HOST_DURATION(RT_timer) - sub.time, RT_timer);

end SUBTRACTJTMER;

— SEND_OPERATOR_EXECUTION_DATA

— This procedure is called within the scheduler program to transmit the
— actual execution start and stop time of the CAPS operator to the
— RUN_TIME_ANALYSIS module.

procedure SEND_OPERATOR_EXECUTION_DATA(
OperatorjDatarin out RUN_TIME_RECORD) is

begin

87

-Send execution data to RUN_TIME_ANALYSIS

GET_OPERATOR_EXECUnON_DATA(Operator_Data);

end SEND_OPERATOR_EXECUTION_DATA;

end RUN TIME MEASURE:

- RUN_TME_TIMER.ADS

- This module is called by the RUN_TIME_MEÄSURE module to create and
- manipulate real-time timers. This package is patterned after
- the PSDL_TIMERS package to allow ease of future transition from
- ADA.CALENDER to ADA.REAL_.TIME.

withTEXTJO; useTEXTJO;
with Ada.Real_Time: use Ada.Real_Time;

package RUN JTIMEJITMER is

subtype MILLISEC is NATURAL;
type TIMER is private;
type timerjist is private;

empty_timer_list: constant timerjist;
function first(tl: timer_list) return TIMER; - raises no_subcomponents
function rest(tl: timer_list) return timer_list; - raises no_subcomponents
procedure add(t: TIMER; tl: in out timer_list);

no_subcomponents: exception;

function READ(NAME: in TIMER) return MILLISEC;
- Timer reading wrt the target machine,

procedure RESET(NAME: TIMER);
procedure START(NAME: TIMER);
procedure STOP(NAME: TIMER);

- operations used by the CAPS tools.

88

function NEW_TIMER return TIMER; - creates and initializes a new timer
function HOST_DURATION(NAME: TIMER) return duration;

-- total time accumulated in the Timer on the host machine.

function TARGET_TO_HOST(d; DURATION) return DURATION;
~ Converts durations on the target machine to the
- corresponding durations on the CAPS host machine,

procedure STOP_ALL_TIMERS;
procedure START_ALL_TTMERS;
procedure SUBTRACT_HOST_TTME(T: duration; NAME: TIMER);
— Subtract T (host machine duration) from the reading on the timer

procedure SUBTRACT_HOST_TIME_FROM_ALL_TIMERS(T: duration);
— Subtract T (host machine duration) from the reading on all timers

pragma INLINE(READ, RESET, START, STOP);
pragma INLINE(HOST_DURATION, STOP_ALL_TIMERS,

START_ALL_TIMERS);

private
type timer_list_record is

record
value: TIMER;
next: timer_list;

end record;
type timerjist is access timer_list_record;
empty_timer_list: constant timerjist := null;
type STATE is (RUNNING, STOPPED);
type TIMER_RECORD is

record
- All times in a TTMER_RECORD are wrt the caps host machine.
STARTTTME: TIME; - Meaningful only if PRESENT_STATE = RUNNING.
ELAPSED_TIME: DURATION := 0.0;
PRESENT_STATE: STATE := STOPPED;

end record;
type TIMER is access TIMER_RECORD;

end RUN_TTME_TIMER;

- RUN_TTME_TIMER.ADB

- This module is called by the RUN_TTME_MEASURE module to create and
- manipulate real-time timers. This package is patterned after

89

- the PSDL_TIMERS package to allow ease of future transition from
- ADA.CALENDER to ADA.REAL_TIME.

with Ada.Real_Time; use Ada.Real_Time;
with CAPS_HARDWARE_MODEL; use CAPS_HARDWARE_MODEL;

package body RUN_TME_TIMER is

- Real time timer list functions

-FIRST

- This function is called to find first timer in timer list

function first(tl: timerjist) return TIMER is

begin

if tl = empty_timer_list then
raise no_subcomponents;

else
return Ü. value;

end if;

end first;

-REST

- This function finds the next timer in the timer list

function rest(tl: timerjist) return timer_list is

begin

if tl = empty_timer_list then
raise no_subcomponents;

90

else
return tl.next:

end if;

end rest:

-ADD

— This procedure places a timer into the timer list

procedure add(t: TIMER; tl: in out timerjist) is

begin

tl := new timer_list_record' (value => t, next => tl);

end add:

— Real time timer manipulation functions

— A list containing all the timers in the prototype and schedules,
timers: timerjist := empty_timer_list;

-- CONVERT_TO_TARGET_TIME

— This function is called to provide a targeted host time calculation.
— The calculation converts elapsed time to milliseconds.

function CONVERT_TO_TARGET_TEME(d: DURATION) return MILLISEC is

CONVERSION_FACTOR: constant FLOAT:= 1000.0;

begin

return MILLISEC(FLOAT(d) * CONVERSION_FACTOR / CPU_SPEED_RATIO);

end CONVERT_TO_TARGET_TIME;

91

- TARGETTOJHOST

- This function is called to adapt the time duration to a targeted
- host CPU speed. The function converts durations on the target
- machine to the corresponding durations on the CAPS host machine.

function TARGET_TO_HOST(d: DURATION) return DURATION is

begin

return DURATION(FLOAT(d) * CPU_SPEED_RATIO);

end TARGET_TO_HOST;

-READ

- This function is called to read the clock counter.

function READ(NAME: in TIMER) return MILLISEC is

--JD TO USE SPLIT procedure in a-reatim.adb
split_time : time_span;
split_timel : time_span;
split_time2 : time_span;
timer_time : TIME;
timer_timel : TIME;
output_time : duration := 0.0;
seconds : Seconds_Count;

begin

case NAME.PRESENT_STATE is
when RUNNING =>

--CHG Elapsed_time from Duration to Time_Span Type
split_time := to_time_span(NAME.ELAPSED_TIME);

-GET the first part of convert-to-target-time call
timer_time := split_time + CLOCK;
ADA.REAL_TIME.spHt(NAME.START_TrME,seconds,split_timel);

92

-GET the second part of convert-to-target-time call
timerjimel := timer_time - split_timel;

-Send the result of the read
AD A.REAL_TIME.split(timer_time 1 ,seconds ,split_time2);
output_time := to_duration(split_time2);

return CONVERT_TO_TARGET_TIME(output_time);

when STOPPED => return
CONVERT_TO_TARGET_TIME(NAME.ELAPSED_TIME);

end case;
end READ;

-RESET

- This procedure is called to reset the clock counter to zero.

procedure RESET(NAME: TIMER) is
begin

NAME.ELAPSED_TIME:= 0.0;

case NAME.PRESENT_STATE is

when RUNNING => NAME.STARTTTME := CLOCK;

when STOPPED => null;

end case;

end RESET;

- START

— This function is called to run the timer counter.

procedure START(NAME: TIMER) is

93

begin

case NAME.PRESENT_STATE is

when RUNNING => null;

when STOPPED =>

NAME.PRESENT_STATE:= RUNNING;

NAME.START_TIME:= CLOCK;

end case;

end START;

- STOP

— This function is called to halt the clock counter

procedure STOP(NAME: TIMER) is

--JD TO USE SPLIT procedure in a-reatim.adb
split_time ; time_span;
split_timel : time_span;
split_time2: time_span;
timer_time : TIME;
timerjimel : TIME;
output_time: duration;
seconds : Seconds_Count;

begin

case NAME.PRESENT_STATE is
when RUNNING =>

NAME.PRESENT_STATE:= STOPPED;

-CHG Elapsed_time from Duration to Time_Span Type
split_time :=. to_time_span(NAME.ELAPSED_TIME);

94

-GET the first part of elapsed time calculation
timerjime := split_time + CLOCK;
ADA.REAL_TIME.spHt(NAME.START_TIME,seconds,split_timer);

-GET the second part of elapsed time calculation
timerjime 1 := timerjime - splitjimel;
ADA.REAL_TIME.spUt(timerjimel,seconds,splitjime2);
output_time := tojiuration(splitjime2);

-Assign the result of the counter
NAME.ELAPSED_.TIME := outputJime;

when STOPPED => null;

end case;

end STOP;

— NEWJITMER

— This function is called to
— create and initializes a new timer

function NEWJITMER return TIMER is

result: timer;

begin

result := new TIMER_RECORD;

add(result, timers);

return result;

end NEW TIMER;

- HOST DURATION

This function when called provides the
total time accumulated in the Timer on the host machine,

95

- used instead of the real-time clock in the static schedule

function HOST_DURATION(NAME: TIMER) return duration is

—SPLIT procedure in a-reatim.adb
split_time : time_span;
split_timel : time_span;
split_time2 : time_span;
tirner_time : TIME;
timer_timel : TIME;
output_time : duration;
seconds : Seconds_Count;
seconds 1 : Seconds_Count;

begin

case NAME.PRESENT_STATE is

when RUNNING =>

--CHG Elapsed_trme from Duration to Time_Span Type
split_time := to_time_span(NAME.ELAPSED_TIME);

—GET the first part of elapsed time calculation
timerjime := split_time + CLOCK:
ADA.REAL_TIME.spüt(NAME.START_TIME,seconds,split_timel);

-GET the second part of elapsed time calculation
timer_timel ;= timer_time - split_timel;
AD A.REAL_TIME.split(timer_time 1 .seconds 1 ,split_time2);
output_time := to_duration(spHt_time2);

-Send the result of the elapsed time
return (output_time);

when STOPPED => return (NAME.ELAPSEDJITME);

end case;

end HOST_DURATION;

96

 ^sl:****^:********* ** *******

— STOP ALL TIMERS — ^ —

— This procedure when called provides the a stop point for all timers in
— the timer list.

procedure STOP_ALL_TIMERS is

tl: timerjist := timers;

begin

while tl /= empty_timer_list loop

STOP(first(tl));

tl := rest(tl);

end loop;

end STOP_ALL_TTMERS:

— START_ALL_ITMERS

— This procedure when called provides the a start point for all timers in
— the timer list.

procedure START_ALL_TTMERS is

tl: timerjist := timers;

begin

while tl /= empty_timer_list loop

START(first(tl));

tl := rest(tl);
end loop;

end START_AIX_TTMERS;

97

- SUBTRACT_HOST_TIME

~ This procedure when called provides subratction of time from timer
- Subtract T (host machine duration) from the reading on timer NAME

procedure SUBTRACT_HOST_TIME(T: duration; NAME: TIMER) is

begin

NAME.ELAPSED_TIME := NAME.ELAPSED_TME - T;

end SUBTRACT HOST TIME;

- SUBTRACT_HOST_TIME_FROM_ALL_TIMERS

- This procedure when called provides subratction of time from timers
— in timer list. Subtract T (host machine duration) from the reading
— on timer NAME

procedure SUBTRACT_HOST_TIME_FROM_ALL_TIMERS(T: duration) is

tl: timer_list := timers;

begin

while tl /= empty_timer_list loop

SUBTRACT_HOST_TIME(T, first(tl));

tl := rest(tl);

end loop;

endSUBTRACT_HOST_TIME_FROM_ALL_TIMERS;

end RUN_TIME_TIMER;

98

«I» J* J> «J> «J^ ^Ic *£* *g# *(c ^Ic *|* *t* j|C *fe ^fe *ltf *1* *fc j|> jfe slcsfe sfe sic 5k sic sic skylit >{c sic sic 2^ stelle sic sfe sic sfe sic sfe slcslc sic sic sic sic st£ sfe sic sk 3d sic sic sic *fe sic sfe sic sic sfc 5k *fe 3fe *fe *fe 3fe

— RUN_TIME_ANALYSIS.ADS

— This module is called to perform an analysis upon the CAPS operator
— execution run time.

fci* «j> *i* ^i» st# *jc sfe sic ste sic sk sic sic ste afe sfe sk 5b sic sic sic sksk stc stc sic sic sic sic sic sic sic sic sic sic sic sfe sic sic sic sic sic sic sfe sic sfe sfc^k sfe. sfe jfe steife *if «j* *Jc sfe sic 3fc sfcsk 5fe 3fe 5k *fe 5k 5|s

withTEXTJO; useTEXTJO;
with RUN_TIME_MEASURE; use RUN_TJME_MEASURE;

package RUN_TIME_ANALYSIS is

-- Run Time Analysis procedures declaration

procedure GET_OPERATOR_EXECUTION_DATA(
OperatorJData : in out RUN_TIME_RECORD);

procedure GET_OPERATOR_ITMING_DATA(
. Operator_Data : in out RUN_TIME_RECORD);

procedure ANALYZE_RESULTS_DATA(
Operator_Data: in out RUN_TIME_RECORD);

procedure SEND_OPERATOR_RUN_TIME_CALCULATION_DATA(
Operator_Data:in out RUN_TME_RECORD);

end RUN_TIME_ANALYSIS;

— RUN_TIME_ANALYSIS.ADB

— This module is called to perform an analysis upon the CAPS operator
— execution run time.

withTEXTJO;
with RUN_TTME_MEASURE; use RUN_JTME_MEASURE;
with RUN_TTME_RESULTS; use RUN_TTME_RESULTS;

99

package body RUN_TIME_ANALYSIS is

package FLO AT JO is new TEXT_IO.FLOAT_IO(FLOAT);

- GET_OPERATOR_EXECUTION_DATA

- This procedure is called by the scheduler program to get actual run
- time data from RUN_TIME_MEASURE module. This run time data includes
- actual execution starting and stopping time of the CAPS operator.

procedure GET_OPERATOR_EXECUTION_DATA(
OperatorJData: in out RUNJTMEJRECORD) is

begin

— Initialize data variable
Operator_Data.Actual_Run_Time := 0.0;

if (Operator_Data.Execution_Stop > Operator_Data.Execution_Start) then

— Calculate Actual Run Time
Operator_Data.Actual_Run_Time :=

Operator_Data.Execution_Stop - OperatorJData.Execution_Start;
else

— Raise Exception
null;
- PUT_LINE("RUN_TIME_ANALYSIS: GET_OPERATOR_EXECUTION_DATA-
STOP < START");

end if;

— Send results to be analyzed
ANALYZE_RESULTS_DATA(Operator_Data);

end GET_OPERATOR_EXECUTION_DATA;

100

- GET_OPERATOR_nMING_DATA

- This procedure is called by the scheduler program to get the planned
- run time data from CAPS SCHEDULER module. This scheduled run time data
- includes predetermined execution starting and stopping time of the
- CAPS operator.

procedure GET_OPERATOR_TIMING_DATA(Operator_Data : in out
RUN_TIME_RECORD) is

begin

— Initialize data variable
Operator_Data.Planned_Run_Time := 0.0;

if (Operator_Data.Planned_Stop > Operator_Data.Planned_Start) then

— Calculate Planned Run Time
Operator_Data.Planned_Run_Time :=

(Operator_Data.Planned_Stop - Operator_Data.Planned_Start);
else

PUT_LINE("RUN_TIME_ANALYSIS:
GET_OPERATOR_TIMING_DATA: STOP < START");

end if;

end GET_OPERATOR_lTMING_DATA;

__***

- ANALYZE_RESULTS_DATA

-- This procedure is called within the RUN_TIME_ANALYSIS module to
- perform an analysis upon the recently retrived CAPS operator
- run time data. This run time data consists of the planned execution
- starting and stopping, as well as actual execution start and stop
- times of this CAPS operator.

101

procedure ANALYZE_RESULTS_DATA(
Operator_Data : in out RUN_TIME_RECORD) is

begin

— Get total run time
Operator_Data.Total_Run_Time :=

Operator_Data.Actual_Run_Time + Operator_Data.Total_Run_Time;

— Determine average run time
Operator_Data.Average_Run_Time :=

(Operator_Data.Total_Run_Time / Operator_Data.Execution_Count);

— Check for new minimum run time
if (Operator_Data. Actual_Run_Time < Operator_Data.Minimum_Run_Time) then

Operator_Dam.Minimum_Run_Time := Operator_Data.Actual_Run_Time;

end if;

— Check for new maximum run time
if (Operator_Data.Actual_Run_Time > Operator_Data.Maximum_Run_Time) then

Operator_Data.Maximum_Run_Time := Operator_Data.Actual_Run_Time;

end if;

— Find planned/actual run time difference
if (Operator_Data.Actual_Run_Time > Operator_Data.Planned_Run_Time) then

Operator_Data.Run_Time_Difference:=
Operator_Data.Actual_Run_Time - OperatorJDataPlannedJRun_Time:

else

Operator_Data.Run_Time_Difference:=
Operator_Data.Planned_Run_Time - Operator_Data.Actual_Run_Time;

end if;

— Ship execution data

102

SEND_OPERATOR_RUN_TIME_CALCULA'nON_DATA(Operator_Data);

end ANALYZE RESULTS DATA;

-SE^fD_OPERATOR_RUN_TIME_CALCULATION_DATA

— This procedure is called by the scheduler program to
— transmit run time calculations to RUN_TIME_RESULTS module
— This scheduled run time data includes predetermined execution starting
— and stopping time of the CAPS operator as well as actual execution
— start and stop times of this operator.

procedure SEND_OPERATOR_RUN_TTME_CALCULATION_DATA(
Operator_Data:in out RUN_TIME_RECORD) is

begin

- Send the execution data to RUN_TTME_RESULTS module

GET_OPERATOR_RUN_TME_CALCULATION_DATA(Operator_Data);

endSEND_OPERATOR_RUN_TIME_CALCULATION_DATA;

end RUN_TIME_ANALYSIS;

^m^ *t* *f* *J* f* *P *T» -(* *J* 3p *J» 5|C 3fC 3JC 3^C 3|C 3p 3p 3|C 3JC !JC 3JC 3JC 3|C 3|C 3|£ 3J» 3|C 3|C 9|C SfC 3|C 3f* 5JC 3JS 5(C 3p *f(3JC 2f£ JJt 9f£ *f(3fC 3fC 3(C SfC 5f£ 3fC 3fE «ft 3ft 2ft ?ft 3ft 3ft 3ft 3jt 2ft 3ft 3|t 3ft 3fC 3ft 3JC TfC 3ft 2ft

-- RUN_TME_RESULTS.ADS

— This module is called to provide the results of the run time
— measurement and analysis of the CAPS operators which have
— been previously performed within the CAPS environment.
— The resultant run time statistics are stored within an execution
— logfile ("LOGFTLE").

withTEXTJO; useTEXTJO;
with RUN_ITME_ANALYSIS; use RUN_TIME_ANALYSIS;

103

with RUN_HME_MEASURE: use RUN_TIME_MEASURE;

package RUN_TTME_RESULTS is

-LOGFILE_IS_OPEN : boolean := FALSE;

procedure GET_OPERATOR_RUN_TIME_CALCULA'nON_DATA(Operator_Data:
in out RUN_TIME_RECORD);

procedure SEND_EXECUTE_RUN_TIME_DATA;

procedure Open_Log_File(Log_File : in out File_Type; Log_Mode: in File_Mode;
Log_Name: in String; Log_Form: in String);

procedure Build_Log_File (Log_File: in out File_Type; Log_Mode: in File_Mode;
Log_Name: in String; Log_Form: in String);

procedure Write_Log_File(Log_File: in File_Type; Log_Item: in String;
Log_Data: float);

procedure Close_Log_File(Log_File: in out File_Type);

end RUN_TIME_RESULTS;

- RUN_TIME_RESULTS.ADB

- This module is called by the main program to provide the results of ■
- the run time measurement and analysis of the CAPS operators which have
- been previously performed within the CAPS environment.
~ The resultant run time statistics are stored within an execution
- logfile ("LOGFTLE").

with TEXTJO; use TEXTJO;
with RUN_1TME_ANALYSIS; use RUN_TTME_ANALYSIS;

package body RUN_TIME_RESULTS is

-FOR LOGFILE FLOAT 10
package NEW_FLOAT_IO is new FLOAT_IO(FLOAT);

104

use NEW_FLOAT_IO:

package fl_io is new float_io(float);
package FLOAT.IO is new TEXT_IO.FLOAT_IO(FLOAT);

Log_File: File_Type;
Log_Mode: File_Mode := Append_File; ~Out_File; -Inout_File;
Log_Name: String := "LOGFILE";
Log_Form: String := "LOG_FORM";
Log_Item: float := 0.1;

— SEND_EXECUTE_RUN_TIME_DATA

— This procedure is called by the RUN_TIME_ANALYSIS module to get the planned
— run time data from CAPS SCHEDULER module. This scheduled run time data
— includes predetermined execution starting and stopping time of the
— CAPS operator.

procedure SEND_EXECUTE_RUN_TIME_DATA is

begin

PUT_LINE("RUN_TINffi_RESULTS:SEND_EXECUTE_RUN_TIME_DATA:");

-PUT_LINE(,, ");
-PUT("EVAL TEMP ACTUAL VS PLANNED TIME:"):
—-fl_io.put((FLOAT(EVAL_TEMP_RT_ACTUAL_STOP)-
FLOAT(EVAL_TEMP_RT_ACTUAL_START))-
(FLOAT(Evaluate_Temp_STOP_TIME2)-(FLOAT(Evaluate_Temp_START_TIME2)));
-PUT_LINE("");

end SEND_EXECUTE_RUN_TIME_DATA;

105

-GET_OPERATOR_RUN_TIME_CALCULATION_DATA

- This procedure is called by the scheduler program to get the planned
- and actual run time data from CAPS SCHEDULER module. This scheduled
- run time data includes predetermined execution starting and stopping
-- times of the CAPS operator as well as the actual start and stop times.

„*********************************^

procedure GET_OPERATOR_RUN_TIME_CALCULATION_DATA(
Operator_Data: in out RUN_TIME_RECORD) is

begin

Open_Log_File(Log_File,Log_Mode, Log_Name, Log_Form);

SEND_EXECUTE_RUN_TIME_DATA;

endGET_OPERATOR_RUN_TIME_CALCULATION_DATA:

- BUILD_LOG_FILE

- This procedure is called to create a file for logging execution time
~ data. This data will include the scheduled predetermined execution
- starting and stopping times of the CAPS operator as well as the actual
- start and stop times.

procedure Build_Log_File (Log_File: in out File_Type; Log_Mode: in File_Mode:
Log_Name: in String; Log_Form: in String) is

begin

Create(Log_File, Log_Mode, Log_Name, Log_Form);

Put_Line(Log_File,"");
Put_Line(Log_File,"RUN TIME EXECUTION MONITOR LOG");
Put_Line(Log_File,"");

end Build_LogJFile;

106

- OPENLOGJFILE

- This procedure is called to open a previously created file for logging
— execution time data. This data includes CAPS operator starting and
— stopping times.

procedure Open_Log_File(Log_File : in out File_Type; Log_Mode: in File_Mode:
Log_Name: in String; Log_Form: in String) is

begin

Open(Log_File, Log_Mode, Log_Name, Log_Fbrm);

—if not (Is_Open(Log_File)) then
—Open_Log_File(Log_File,Log_Mode, Log_Name,Log_Form);
—end if;

if Is_Open(Log_File) then
~PUT_LINE("RT_RESULTS:Open_Log_Füe");
null;

else
-PUT_LINE("RT_RESULTS: NOT Open_Log_File");
null;

end if;

end Open_Log_File;

- CLOSE_LOG_FILE

- This procedure is called to close a previously opened file for logging
- execution time data. This data includes CAPS operator starting and
- stopping times.

procedure Close_Log_File(Log_File: in out File_Type) is

begin

107

Close(Log_Füe);

end Close_Log_File;

- WRITE_LOG_FTLE

- This procedure is called to write to a previously created and opened
-- file for logging execution time data. This data includes CAPS operator
- starting and stopping times.

procedure Write_Log_File(Log_File: in FileJType;
Logjtem: in String; Log_Data: float) is

begin

Put_Line(Log_File,Log_Item);

NEW_FLOAT_IO.PUT(Log_Füe,float(Log_Data),0);

Put_Line(Log_File," ");

end Write_Log_File;

end RUN_TIME_RESULTS;

108

PROTOTYPE CODE

with TEMP_CONTROLLER_DRTVERS; use TEMP_CONTROLLER_DRIVERS;
with PRIORITY_DEFINrnONS; use PRIORITY.DEFINITIONS;
with PSDLJTIMERS; use PSDL_TIMERS;
withTEXTJO; useTEXTJO;

with RUN_TIME_MEASURE; use RUN_TIME_MEASURE;
with RUN_TIME_ANALYSIS; use RUN_TIME_ANALYSIS;
-with RUN_TIME_RESULTS; use RUN_TIME_RESULTS;
with RUN_TIME_TIMER; use RUN_TIME_TIMER;

with Ada.Real_Time; use Ada.Real_Time;
with System.Time_Operations;
-Used for Clock

package body TEMP_CONTROLLER_STATIC_SCHEDULERS is

package fl_io is new float_io(float);

package FLOATJO is new TEXT_IO.FLOAT_IO(FLOAT);
package INTJO is new TEXT_IO.INTEGER_IO(INTEGER);

task type STATIC_SCHEDULE_TYPE is
pragma priority (STATIC_SCHEDULE_PRIORnY);
entry START;

end STATIC_SCHEDULE_TY*E:
for STATIC_SCHEDULE_TYPE'STORAGE_SIZE use 200_000;
STATIC_SCHEDULE: STATIC_SCHEDULE_TYPE;

task body STATIC_SCHEDULE_TYPE is
PERIOD : duration;
Sensor_START_TTMEl: duration;
Sensor_STOP_ITMEl : duration;
Evaluate_Temp_START_TIME2 : duration;
Evaluate_Temp_STOP_TIME2: duration;
schedule_timer: PSDL_TIMERS.TIMER := PSDL_TEMERS.NEW_TIMER;

— EstabMsh array for multiple operator data records
Max : constant integer := 100;
type RUN_TIME_ARRAY is array (1 .. Max) of RUN_TTME_RECORD;

—Establish the operator data records

109

Sensor_Operator_Data: RUN_TIME_ARRAY;
Evaluate_Temp_Operator_Data: RUN_TIME_ARRAY;

begin

accept START;

PERIOD := PSDL_lTMERS.TARGET_TO_HOST(
duration(1.00000000000000E-01));

Sensor_START_TIMEl:=PSDL_TIMERS.TARGET_TO_HOST(
duration(0.0000000000O0O0E+00));

- 1st Sensor_STOP_TIMEl :=PSDL_TIMERS.TARGET_TO_HOST(
duration(1.75000000000000E-01));

-2nd Sensor_STOP_TIME 1 :=PSDL_TIMERS.TARGET_TO_HOST(
duration(4.5Ö000000000000E-05));

-3rd
Sensor_STOP_TIMEl:=PSDL_TIMERS.TARGET_TO_HOST(

duration(1.26000000000000E-04));
-1st Evaluate_Temp_START_TIME2 :=
PSDL_TIMERS.TARGET_TO_HOST(duration(1.75000000000000E-01));
-2nd Evaluate_Temp_START_TIME2 :=
PSDL_TIMERS.TARGET_TO_HOST(duration(4.50000000000000E-05));
-3rd
Evaluate_Temp_START_TTME2 :=
PSDL_TIMERS.TARGET_TO_HOST(duraüon(1.260000{)0000000E-04));
-1st Evaluate_Temp_STOP_TIME2 := PSDL_TIMERS.TARGETTO_HOST(

duration(3.75000000000000E-01));
-2nd Evaluate_Temp_STOP_TIME2 :=
PSDL_TIMERS.TARGET_TO_HOST(duration(1.03700000000000E-03));
-3rd
Evaluate_Temp_STOP_TIME2 :=
PSDL_TIMERS.TARGET_TO_HOST(duration(1.76900000000000E-03)):

-Setup SENSOR operator
Sensor_Operator_Data(l).Planned_Start := float(Sensor_START_TIMEl);
Sensor_Operator_Data(l).Planned_Stop := float(Sensor_STOP_TIMEl);
Sensor_Operator_Data(l).Operator_Name := "SENSOR";
GET_OPERATOR_TIMING_DATA(Sensor_Operator_Data(l));

-Setup EVALUATEJTEMP operator
Evaluate_Temp_Operator_Data(l).Planned_Start :=

float(Evaluate_Temp_START_TIME2);
Evaluate_Temp_Operator_Data(l).Planned_Stop :=

float(Evaluate_Temp_STOP_TIME2);

110

Evaluate_Temp_Operator_Data(l).Operator_Name := "EVAL ";
GET_OPER ATOR_TIMING_D ATA(Evaluate_Temp_Operator_Data^(1));

-Create the real-time timer
CREATE_NEW_RTjnMER;

—Initialize the real-time timer
RUN_TME_MEASURE.START_RT_TIMER;

START(schedule_timer);

loop

if (Sensor_START_TIMEl > PSDL_TIMERS.HOST_DURATION(schedule_timer))
then

delay(Sensor_START_TIMEl -
PSDL_TIMERS.HOST_DURATION(schedule_timer));

end if:

—Stop/start scheduler timer and get actual execution times
PSDL_TIMERS.STOP_ALL_TIMERS;
GET_OPERATOR_EXECUTION_START(Sensor_Operator_Data(l));
PSDL_TIMERS.START_ALL_TIMERS;

SensorJDRTVER:

—Stop the scheduler timer and get actual execution times
PSDL_TIMERS.STOP_ALL_TIMERS;
GET_OPERATOR_EXECUTION_STOP(Sensor_Operator_Data(l));
PSDL_TEMERS.START_ALL_TIMERS;

if PSDL_TIMERS.HOST_DURATION(schedule_timer) > Sensor_STOP_TIMEl
then

PUT_LINE("timing error from operator Sensor");

—Stop/start scheduler timer and get actual execution times
PSDL_T[MERS.STOP_ALL_TIMERS;

—Increment timing error totals
Sensor_Operator_Data(1) .Total_Timing_Error;=

Sensor_Operator_Data(l).Total_Timing_Error +1.0;
PSDL_TTMERS.START_ALL_TIMERS;

-Subtract any slack time from real-time monitor timer

111

RUN_TIME_MEASURE.SUBTRACT_TIMER(
PSDL_TIMERS.HOST_DURATION(schedule_timer)-

Sensor_STOP_TIMEl);

-Subtract any slack time from scheduler timer
PSDL_TIMERS.SUBTRACT_HOST_TIME_FROM_ALL_TIMERS(

PSDL_TIMERS.HOST_DURATION(schedule_timer) - Sensor_STOP_HMEl);

end if;

if(Evaluate_Temp_START_TME2 >
PSDL_TIMERS.HOST_DURATION(schedule_timer))then

delay(Evaluate_Temp_START_TIME2 -
PSDL_TMERS.HOST_DURAHON(schedule_timer));
end if;

-Stop/start scheduler timer and get actual execution times
PSDL_TTMERS.STOP_ALL_TIMERS;
GET_OPERATOR_EXECUnON_START(Evaluate_Temp_Operator_Data(l)):
PSDL_TIMERS.START_ALL_IIMERS;

" Evaluate_Temp_DRTVER;

-Stop the scheduler timer and get actual execution times
PSDL_TIMERS.STOP_ALL_TIMERS;
GET_OPERATOR_EXECUnON_STOP(Evaluate_Temp_Operator_Data(l));
PSDL_TIMERS.START_ALL_TIMERS;

if PSDL_lTMERS.HOST_DURATION(schedule_timer) >
Evaluate_Temp_STOP_TIME2 then

PUT_LINE("timing error from operator Evaluate_Temp");

-Stop/start scheduler timer and get actual execution times
PSDL_HMERS.STOP_ALL_TIMERS;

-Increment timing error totals
Evaluate_Temp_Operator_Data(l).Total_Timing_Error:=

Evaluate_Temp_Operator_Data(l)Total_Timing_Error + 1.0;

PSDL_TIMERS.START_ALL_TIMERS;

-Subtract any slack time from real-time monitor timer

112

RUN_TIME_MEASURE.SUBTRACT_T1MER(
PSDL_TIMERS.HOST_DURAT[ON(schedule_timer)-

Evaluate_Temp_ST0PlTIME2);

—Subtract any slack time from scheduler timer
PSDL_TIMERS.SUBTRACT_HOST_TIME_FROM_ALL_TIMERS(

PSDL_TIMERS.HOST_DURATION(schedule_ümer)
- Evaluate_Temp_STOP_TIME2);

end if;

delay(PERIOD - PSDL_TIMERS.HOST_DURAT[ON(schedule_timer));

—Most intensive overhead stuff here to minimize
—scheduling interference

—Stop/start scheduler timer and get actual execution times
PSDL_HMERS.STOP_ALL_TIMERS;

SEND_OPERATOR_EXECUTION_DATA(Sensor_Operator_Data(l));

SEND_OPERATOR_EXECUnON_DATA(Evaluate_TempJÖperator_Data<l));

RUN_TIME_MEASURE.RESET_RT_TIMER;

—Stop/start scheduler timer and get actual execution times
PSDL_TTMERS.START_ALL_TIMERS;

RESET(schedule_timer);

end loop;

end STATIC_SCHEDULE_TYPE;

procedure START_STAT1C_SCHEDÜLE is
begin

STATIC.SCHEDULE.START;
end START_STATIC_SCHEDULE;

end TEMP_CONTROLLER_STATIC_SCHEDULERS;

113

H. ANALYSIS LOGFILE

OPERATOR RUN TIME 2.07800E-03

ANALYSIS LOGFILE MINIMUM RUN TIME:

2.07800E-03

= 1ST RUN = AVERAGE RUN TIME:

2.07800E-03

SENSOR PLANNED RUN TIME:

O.OOOOOE+00 2.00000E-01

EXECUTION COUNT: TOTAL TIMING ERRORS:

1.00000E+00 O.OOOOOE+00

CURRENT RUN TIME: SENSOR

3.20000E-04 O.OOOOOE+00

MAXIMUM RUN TIME: EXECUTION COUNT:

3.20000E-04 2.00000E+00

MINIMUM RUN TIME: CURRENT RUN TIME:

3.20000E-04 8.80000E-05

AVERAGE RUN TIME: MAXIMUM RUN TIME:

3.20000E-04 3.20000E-04

PLANNED RUN TIME: MINIMUM RUN TIME:

1.75000E-01 8.80000E-05

TOTAL TIMING ERRORS: AVERAGE RUN TIME:

O.OOOOOE+00 2.04000E-04

EVAL PLANNED RUN TIME:

O.OOOOOE+00 1.75000E-01

EXECUTION COUNT: TOTAL TIMING ERRORS:

1.00000E+00 O.OOOOOE+00

CURRENT RUN TIME: EVAL

2.07800E-03 O.OOOOOE+00

MAXIMUM RUN TIME: EXECUTION COUNT:

114

2.00000E+00

CURRENT RUN TIME:

1.19901E-03

MAXIMUM RUN TIME:

2.07800E-03

MINIMUM RUN TIME:

1.19901E-03

AVERAGE RUN TIME:

1.63850E-03

PLANNED RUN TIME:

2.00000E-01

TOTAL TIMING ERRORS:

O.OOOOOE400

SENSOR

O.OOOOOE-fOO

EXECUTION COUNT:

3.00000E4O0

CURRENT RUN TIME:

9.40000E-05

MAXIMUM RUN TIME:

3.20000E-04

MINIMUM RUN TIME:

8.800OOE-05

AVERAGE RUN TIME:

1.67333E-04

PLANNED RUN TIME:

1.75000E-01

TOTAL TIMING ERRORS:

0.00000E+OO

EVAL

0.0O0OOE+0O

EXECUTION COUNT:

3.00000E+00

CURRENT RUN TIME:

1.29700E-03

MAXIMUM RUN TIME:

2.07800E-03

MINIMUM RUN TIME:

1.19901E-03

AVERAGE RUN TIME:

1.52467E-03

PLANNED RUN TIME:

2.00000E-01

TOTAL TIMING ERRORS:

0.00000E+00

SENSOR

0.00000E+00

EXECUTION COUNT:

4.00000E+00

CURRENT RUN TIME:

9.80000E-05

MAXIMUM RUN TIME:

3.20000E-04

MINIMUM RUN TIME:

8.80000E-05

AVERAGE RUN TIME:

1.50000E-04

PLANNED RUN TIME:

1.75000E-01

TOTAL TIMING ERRORS:

115

O.OOOOOE+00 1.75000E-01

EVAL TOTAL TIMING ERRORS:

O.OOOOOE+00 O.OOOOOE+00

EXECUTION COUNT: EVAL

4.00000E+00 O.OOOOOE+00

CURRENT RUN TIME: EXECUTION COUNT:

1.29299E-03 5.00000E+00

MAXIMUM RUN TIME: CURRENT RUN TIME:

2.07800E-03 1.20100E-03

MINIMUM RUN TIME: MAXIMUM RUN TIME:

1.19901E-03 2.07800E-03

AVERAGE RUN TIME: MINIMUM RUN TIME:

1.46675E-03 1.19901E-03

PLANNED RUN TIME: AVERAGE RUN TIME:

2.00000E-01 1.41360E-03

TOTAL TIMING ERRORS: PLANNED RUN TIME:

O.OOOOOE+00 2.00000E-01

SENSOR TOTAL TIMING ERRORS:

O.OOOOOE+00 O.OOOOOE+00

EXECUTION COUNT: SENSOR

5.00000E+00 O.OOOOOE+00

CURRENT RUN TIME: EXECUTION COUNT:

9.00000E-05 6.00000E+00

MAXIMUM RUN TIME: CURRENT RUN TIME:

3.20000E-04 9.20000E-05

MINIMUM RUN TIME: MAXIMUM RUN TIME:

8.800OOE-05 3.20000E-04

AVERAGE RUN TIME: MINIMUM RUN TIME:

1.38000E-04 8.80000E-05

PLANNED RUN TIME: AVERAGE RUN TIME:

116

1.30333E-04

PLANNED RUN TIME:

1.75000E-01

TOTAL TIMING ERRORS:

0.000OOE+OO

EVAL

O.OOOOOE+00

EXECUTION COUNT:

6.00000E+00

CURRENT RUN TIME:

1.41999E-03

MAXIMUM RUN TIME:

2.07800E-03

MINIMUM RUN TIME:

1.19901E-03

AVERAGE RUN TIME:

1.41466E-03

PLANNED RUN TIME:

2.00000E-01

TOTAL TIMING ERRORS:

O.OOOOOE+00

SENSOR

O.OOOOOE+00

EXECUTION COUNT:

7.00000E+00

CURRENT RUN TIME:

8.9000OE-05

MAXIMUM RUN TIME:

3.20000E-04

MINIMUM RUN TIME:

8.80000E-05

AVERAGE RUN TIME:

1.24429E-04

PLANNED RUN TIME:

1.75000E-01

TOTAL TIMING ERRORS:

O.OOOOOE+00

EVAL

O.OOOOOE+00

EXECUTION COUNT:

7.00000E+00

CURRENT RUN TIME:

1.31400E-03

MAXIMUM RUN TIME:

2.07800E-03

MINIMUM RUN TIME:

1.19901E-03

AVERAGE RUN TIME:

1.40028E-03

PLANNED RUN TIME:

2.00000E-01

TOTAL TIMING ERRORS:

O.OOOOOE+00

SENSOR

O.OOOOOE+00

EXECUTION COUNT:

8.00000E+00

CURRENT RUN TIME:

9.30000E-05

MAXIMUM RUN TIME:

117

3.20000E-04

'MINIMUM RUN TIME: SENSOR

8.80OOOE-O5 O.OOOOOE+00

AVERAGE RUN TIME: EXECUTION COUNT:

1.20500E-04 l.OOOOOE+00

PLANNED RUN TIME: CURRENT RUN TIME:

1.75000E-01 2.60000E-04

TOTAL TIMING ERRORS: MAXIMUM RUN TIME:

O.OOOOOE+00 2.60000E-04

EVAL MINIMUM RUN TIME:

0.00000E+00 2.60000E-04

EXECUTION COUNT: AVERAGE RUN TIME:

8.00000E+00 2.60000E-04

CURRENT RUN TIME: PLANNED RUN TIME:

1.20300E-03 4.50000E-05

MAXIMUM RUN TIME: TOTAL TIMING ERRORS:

2.0780OE-O3 1.00000E+00

MINIMUM RUN TIME: EVAL

1.19901E-03 O.OOOOOE+00

AVERAGE RUN TIME: EXECUTION COUNT:

1.37562E-03 1.00000E+00

PLANNED RUN TIME: CURRENT RUN TIME:

2.00000E-01 1.56500E-03

TOTAL TIMING ERRORS: MAXIMUM RUN TIME:

O.OOOOOE+00 1.56500E-03

MINIMUM RUN TIME:

1.56500E-03

AVERAGE RUN TIME:

 2ND RUN 1.56500E-03

PLANNED RUN TIME:

118

9.92000E-04

TOTAL TIMING ERRORS:

l.OOOOOE+00

SENSOR

0.0000OE+0O

EXECUTION COUNT:

2.00000E+00

CURRENT RUN TIME:

9.50000E-05

MAXIMUM RUN TIME:

2.60000E-04

MINIMUM RUN TIME:

9.50000E-05

AVERAGE RUN TIME:

1.77500E-04

PLANNED RUN TIME:

4.50000E-05

TOTAL TIMING ERRORS:

2.00000E+00

EVAL

0.00000E+00

EXECUTION COUNT:

2.00000E+00

CURRENT RUN TIME:

1.16400E-03

MAXIMUM RUN TIME:

1.56500E-03

MINIMUM RUN TIME:

1.16400E-03

AVERAGE RUN TIME:

1.36450E-03

PLANNED RUN TIME:

9.92000E-04

TOTAL TIMING ERRORS:

2.00000E+00

SENSOR

O.OOOOOE+00

EXECUTION COUNT:

3.00000E+00

CURRENT RUN TIME:

9.30000E-05

MAXIMUM RUN TIME:

2.60000E-04

MINIMUM RUN TIME:

9.30000E-05

AVERAGE RUN TIME:

1.49333E-04

PLANNED RUN TIME:

4.50000E-05

TOTAL TIMING ERRORS:

3.00000E+00

EVAL

0.00000E+00

EXECUTION COUNT:

3.00000E+00

CURRENT RUN TIME:

1.15000E-03

MAXIMUM RUN TIME:

1.56500E-03

MINIMUM RUN TIME:

119

1.15000E-03 1.56500E-03

AVERAGE RUN TIME: MINIMUM RUN TIME: ■*

1.29300E-03 1.15000E-03

PLANNED RUN TIME: AVERAGE RUN TIME:

9.92000E-04 1.25850E-03

TOTAL TIMING ERRORS: PLANNED RUN TIME:

3.00000E+00 9.92000E-04

SENSOR TOTAL TIMING ERRORS:

O.OOOOOE+00 4.00000E+00

EXECUTION COUNT: SENSOR

4.00000E+00 O.OOOOOE+00

CURRENT RUN TIME: EXECUTION COUNT:

9.00000E-05 5.00000E+00

MAXIMUM RUN TIME: CURRENT RUN TIME:

2.60000E-04 1.01000E-04

MINIMUM RUN TIME: MAXIMUM RUN TIME:

9.00000E-05 2.60000E-04

AVERAGE RUN TIME: MINIMUM RUN TIME:

1.34500E-04 9.00000E-05

PLANNED RUN TIME: AVERAGE RUN TIME:

4.50000E-05 1.27800E-04

TOTAL TIMING ERRORS: PLANNED RUN TIME:

4.00000E+00 4.50000E-05

EVAL TOTAL TIMING ERRORS:

O.OOOOOE+00 5.00000E+00

EXECUTION COUNT: EVAL

4.00000E+00 O.OOOOOE+00

CURRENT RUN TIME: EXECUTION COUNT:

1.15500E-03 5.00000E+00

MAXIMUM RUN TIME: CURRENT RUN TTME:

120

1.16000E-03 6.00000E+00

MAXIMUM RUN TIME: - CURRENT RUN TIME:

1.56500E-03 1.13700E-03

MINIMUM RUN TIME: MAXIMUM RUN TIME:

1.15000E-03 1.56500E-03

AVERAGE RUN TIME: MINIMUM RUN TIME:

1.23880E-03 1.1370OE-03

PLANNED RUN TIME: AVERAGE RUN TIME:

9.92000E-04 1.22183E-03

TOTAL TIMING ERRORS: PLANNED RUN TIME:

5.00000E+00 9.92000E-04

SENSOR TOTAL TIMING ERRORS:

O.OOOOOE+00 6.00000E+00

- EXECUTION COUNT:

6.00000E+00

CURRENT RUN TIME: 3RD RUN

9.10000E-05

MAXIMUM RUN TIME:

2.60000E-04

MINIMUM RUN TIME: SENSOR

9.00000E-05 O.OOOOOE+00

AVERAGE RUN TIME: EXECUTION COUNT:

1.21667E-04 l.OOOOOE+00

PLANNED RUN TIME: CURRENT RUN TIME:

4.50000E-05 1.31000E-04

TOTAL TIMING ERRORS: MAXIMUM RUN TIME:

101 (WIE f\A

EVAL

O.OOOOOE400

EXECUTION COUNT:

MINIMUM RUN TIME:

1.31000E-04

AVERAGE RUN TIME:

121

1.31000E-04 9.40000E-05

PLANNED RUN TIME: AVERAGE RUN TIME:

1.26000E-04 1.12500E-04

TOTAL TIMING ERRORS: PLANNED RUN TIME:

1.00000E+00 1.26000E-04

EVAL TOTAL TIMING ERRORS:

O.OOOOOE+00 1.00000E+00

EXECUTION COUNT: EVAL

1.00000E+00 O.OOOOOE+OO

CURRENT RUN TIME: EXECUTION COUNT:

1.51100E-03 2.00000E+00

MAXIMUM RUN TIME: CURRENT RUN TIME:

1.51100E-03 1.25700E-03

MINIMUM RUN TIME: MAXIMUM RUN TIME:

1.5110OE-03 1.51100E-03

AVERAGE RUN TIME: MINIMUM RUN TIME:

1.51100E-03 1.25700E-03

PLANNED RUN TIME: AVERAGE RUN TIME:

1.64300E-03 1.38400E-03

TOTAL TIMING ERRORS: PLANNED RUN TIME:

O.OOOOOE+00 1.64300E-03

SENSOR TOTAL TIMING ERRORS:

O.OOOOOE+00 0.00000E+00

EXECUTION COUNT: SENSOR

2.00000E+00 O.OOOOOE+00

CURRENT RUN TIME: EXECUTION COUNT:

9.40000E-05 3.00000E+00

MAXIMUM RUN TIME: CURRENT RUN TIME:

1.31000E-04 9.30000E-05

MINIMUM RUN TIME: MAXIMUM RUN TIME:

122

1.31000E-04 9.1O0O0E-05

MINIMUM RUN TIME: MAXIMUM RUN TIME:

9.30OOOE-05 1.31000E-04

AVERAGE RUN TIME: MINIMUM RUN TIME:

1.06000E-04 9.1O0OOE-05

PLANNED RUN TIME: AVERAGE RUN TTME:

1.26000E-04 1.02250E-04

TOTAL TIMING ERRORS: PLANNED RUN TIME:

1.000OOE4OO 1.26000E-04

EVAL TOTAL TIMING ERRORS:

O.OOOOOE+00 l.OOOOOE+OO

EXECUTION COUNT: EVAL

3.00000E+00 O.OOOOOE+00

CURRENT RUN TIME: EXECUTION COUNT:

1.22100E-03 4.00000E+00

MAXIMUM RUN TIME: CURRENT RUN TIME:

1.51100E-03 1.23500E-03

MINIMUM RUN TTME: MAXIMUM RUN TIME:

1.22100E-03 1.51100E-03

AVERAGE RUN TIME: MINIMUM RUN TIME:

1.32967E-03 1.22100E-03

PLANNED RUN TIME: AVERAGE RUN TIME:

1.64300E-03 1.30600E-03

TOTAL TIMING ERRORS: PLANNED RUN TIME:

O.OOOOOE+00 1.64300E-03

SENSOR TOTAL TIMING ERRORS:

O.OOOOOE+00 O.OOOOOE+00

EXECUTION COUNT: SENSOR

4.00000E+00 O.OOOOOE+00

CURRENT RUN TIME: EXECUTION COUNT:

123

5.00000E+00 0.00000E+00

CURRENT RUN TIME: EXECUTION COUNT:-

9.20000E-05 6.00000E+00

MAXIMUM RUN TIME: CURRENT RUN TIME:

1.31000E-04 9.20000E-05

MINIMUM RUN TIME: MAXIMUM RUN TIME:

9.10000E-05 1.31000E-04

AVERAGE RUN TIME: MINIMUM RUN TIME:

1.00200E-04 9.10000E-05

PLANNED RUN TIME: AVERAGE RUN TIME:

1.26000E-04 9.88333E-05

TOTAL TIMING ERRORS: PLANNED RUN TIME:

1.00000E+00 1.26000E-04

EVAL TOTAL TIMING ERRORS:

O.OOOOOE-KX) 1.00000E+00

EXECUTION COUNT: EVAL

5.00000E+O0 0.00000E+00

CURRENT RUN TIME: EXECUTION COUNT:

1.45800E-03 6.00000E+00

MAXIMUM RUN TIME: CURRENT RUN TIME:

1.51100E-03 1.24800E-03

MINIMUM RUN TIME: MAXIMUM RUN TIME:

1.22100E-03 1.51100E-03

AVERAGE RUN TIME: MINIMUM RUN TIME:

1.33640E-03 1.22100E-03

PLANNED RUN TIME: AVERAGE RUN TIME:

1.64300E-03 1.32167E-03

TOTAL TIMING ERRORS: PLANNED RUN TIME:

0.00O0OE+OO 1.64300E-03

SENSOR TOTAL TIMING ERRORS:

124

O.OOOOOE+00

SENSOR

O.OOOOOE+00

EXECUTION COUNT:

7.00000E+00

CURRENT RUN TIME:

9.50000E-05

MAXIMUM RUN TIME:

1.31000E-04

MINIMUM RUN TIME:

9.10000E-05

AVERAGE RUN TIME:

9.82857E-05

PLANNED RUN TIME:

1.26000E-04

*fOTAL TIMING ERRORS:

1.00000E+00

EVAL

O.OOOOOE+00

EXECUTION COUNT:

7.00000E+00

CURRENT RUN TIME:

1.23500E-03

MAXIMUM RUN TIME:

1.51100E-03

MINIMUM RUN TIME:

1.22100E-03

AVERAGE RUN TIME:

1.30929E-03

PLANNED RUN TIME:

1.64300E-03

TOTAL TIMING ERRORS:

O.OOOOOE+00

SENSOR

O.OOOOOE+00

EXECUTION COUNT:

8.00000E+00

CURRENT RUN TIME:

9.50000E-05

MAXIMUM RUN TIME:

1.31000E-04

MINIMUM RUN TIME:

9.10000E-05

AVERAGE RUN TIME:

9.78750E-05

PLANNED RUN TIME;

1.26000E-04

TOTAL TIMING ERRORS:

1.00000E+00

EVAL

O.OOOOOE+00

EXECUTION COUNT:

8.00000E+00

CURRENT RUN TIME:

1.24600E-03

MAXIMUM RUN TIME:

1.51100E-03

MINIMUM RUN TIME:

1.22100E-03

AVERAGE RUN TIME:

125

1.30137E-03 1.22100E-03

PLANNED RUN TIME: AVERAGE RUN TIME:

1.64300E-03 1.29378E-03

TOTAL TIMING ERRORS: PLANNED RUN TIME:

O.OOOOOE+00 1.64300E-03

SENSOR TOTAL TIMING ERRORS:

O.OOOOOE+00 O.OOOOOE+00

EXECUTION COUNT: SENSOR

9.00000E+00 0.00000E+00

CURRENT RUN TIME: EXECUTION COUNT:

9.20000E-05 l.OOOOOE+01

MAXIMUM RUN TIME: CURRENT RUN TIME:

1.31000E-04 9.30000E-05

MINIMUM RUN TIME: MAXIMUM RUN TIME:

9.10000E-05 1.31000E-04

AVERAGE RUN TIME: MINIMUM RUN TIME:

9.72222E-05 9.10000E-05

PLANNED RUN TIME: AVERAGE RUN TIME:

1.26000E-04 9.68000E-05

TOTAL TIMING ERRORS: PLANNED RUN TIME:

1.00000E+00 1.26000E-04

EVAL TOTAL TIMING ERRORS:

O.OOOOOE+00 1.00000E+00

EXECUTION COUNT: EVAL

9.00000E+00 O.OOOOOE+00

CURRENT RUN TIME: EXECUTION COUNT:

1.2330OE-03 1.00000E+01

MAXIMUM RUN TIME: CURRENT RUN TIME:

1.51100E-03 1.23200E-03

MINIMUM RUN TIME: MAXIMUM RUN TIME:

126

1.51100E-03

MINIMUM RUN TIME:

1.22100E-03

AVERAGE RUN TIME:

1.28760E-03

PLANNED RUN TIME:

1.64300E-03

TOTAL TIMING ERRORS:

O.OOOOOE+00

= END =

127

128

GLOSSARY

Although there may be several definitions for the terms in this glossary, only those
related to a term's usage in this thesis are included here.

Real-Time - events which occur on a scheduled basis in a timely manner.

Task set - grouping of predefined processes to be executed.

Run time - occurring during program execution.

Commercial Off The Shelf - equipment developed commercially and available on the open
market.

Buffer - dedicated area in memory for storing data.

129

130

REFERENCES

1. Luqi, V. Berzins, Rapidly Prototyping Real-Time Systems, IEEE Software, September
1988, pp. 25-36.

2. Jeff England, et al., Ada Performance Analyzer, Technical Report, Intermetrics Inc,
Huntington Beach, CA, 1985.

3. Gaurav Arora, David Stewart, AFTER: A case tool to assist in Fine-tuning of
embedded real-time systems, University of Maryland, MD.

4. Thomas J. Ball, James R. Laras, Optimally Profiling and Tracing Program, TR 1031,
Computer Sciences Department, University of Wisconsin-Madison, July 1991.

5. Vishal Jain, et al., An approach for monitoring intrusion removal in Real Time
Systems, University of Pittsburgh and Trinity College, 1997.

6. M. van Riek, et al, Monitoring of Distributed Memory Multicomputer Programs,
Laboratoire de FInformatique du Parallelisme, and Department of Computer Science,
University of Tennessee.

7. Luqi, M. Shing, CAPS - A Tool for Real-Time System Development and Acquisition,
Quarterly Review, Office of Naval Research, Vol. XLIV, No. 1,1992, pp. 12-16.

8. Luqi, Handling Timing Constraints in Rapid Prototyping, Proceedings of the Twenty-
second annual Hawaii International Conference on System Science, 1989.

9. Luqi, V. Berzins, R. Yeh, A Prototyping Language for Real-Time Software, IEEE
Transactions on Software Engineering, October 1988, Vol. 14, No. 10, pp. 1409-
1423.

10. John Barnes, Ada 95 Rationale: The Language, The Standard Libraries. Lecture Notes
in Computer Science, vol 1247, Springer-Verlag, 1997, ISBN 3-540-63143-7.

11. Luqi, M. Shing, Real-Time Scheduling for a Software Prototyping, Journal of
Systems Integration, Vol. 6,1996, pp. 41-72.

12. Awad. Maher, OBJECT-ORIENTED TECHNOLOGY FOR REAL-TIME SYSTEMS:
A Practical Approach Using OMT And Fusion, Prentice Hall, NJ,

131

132

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
8725 John J. Kingman Road, Suite 0944
Fort Belvoir, Virginia 22060-6218

2. Dudley Knox Library 2
Naval Postgraduate School
411 Dyer Rd.
Montery, California 93943-5101

3. Center for Naval Analysis 1
4401 Ford Avenue
Alexandria, Virginia 22302-0268

4. Chief of Naval Research 1
800 N. Qunicy Street
Arlington, Virginia 22217

5. Dr. Man-Tak Shing, Code CS/Sh 1
Naval Postgraduate School
Montery, California 93943-5100

6. Dr. Ted Lewis, Code CS/Lt 1
Chair, Computer Science Department
Naval Postgraduate School
Montery, California 93943-5100

7. Dr. Valdis Berzins, Code CS/Be 1
Naval Postgraduate School
Montery, California 93943-5100

8. Dr. Luqi, Code CS/Lq 1
Naval Postgraduate School
Montery, California 93943-5100

9. Library, Code D0274 1
Naval Command, Control, and Ocean Surveillance Center
RDT&E Division
San Diego, California 92152-5001

133

10. Anh Le, Scientist, Code D0274
Naval Health Research Center
San Diego, California 92152-5001

11. Hon. John W. Douglas
Assistant Secretary of the Navy
(Inferences, Research, Development and Acquisition)
Room E741
1000 Navy Pentagon
Washington, DC 20350-1000

12. John Drummond, Scientist, Code D4123
Naval Command, Control, and Ocean Surveillance Center
RDT&E Division
San Diego, California 92152-5001

13. Dr. Marvin Längsten
1225 Jefferson Davis Highway
Crystal Gateway 2 / Suite 1500
Arlington, Virginia 22202-4311

14. Capt. Talbot Manvel
Naval Sea Systems
2531 Jefferson Davis Hwy.
Arlington, Virginia 22240-5150

15. National Science Foundation
Attn: Bill Agresty
4201 Willson Blvd.
Arlington, Virginia 22230

134

